COSETS, Recap

\[H \trianglelefteq G \]

\[\{h_1, \ldots, h_n\} \]

\[x \sim y \iff xy^{-1} \in H \]

Equivalence Classes:

\[Hz = \{h_1z, h_2z, \ldots, h_nz\} \] is a coset

What do we know about coset \(Hz \)?

- \(z \in Hz \)
- \(z' \in Hz \implies Hz' = Hz \)
- \(z' \notin Hz \implies Hz' \cap Hz = \emptyset \)

Cosets

\[Hze, Hz_1, Hz_2, \ldots, Hz_n \]
A FURTHER EXAMPLE

\[G = \{ \ldots, -2, -1, 0, 1, 2, \ldots \} = \mathbb{Z} \]
\[H = \{ \ldots, -10, -5, 0, 5, 10, \ldots \} = 5\mathbb{Z} \]

NOTE: \(H+1 = H+6 = H-4 = \ldots \)

ETC.
LAGRANGE THEOREM

IF G IS FINITE AND $H \leq G$ THEN $|H|$ DIVIDES $|G|$

PROOF: $G = H \cup H_2 \cup H_2 \cup \ldots$

CLAIM: $|HZ| = |H|$

PROOF: $HZ = \{h_i z, h_2 z, \ldots \}$

\[h_i z = h_j z \iff h_i = h_j \]

\[(h_i z z^{-1} = h_j z z^{-1} \rightarrow h_i = h_j) \]

Q.E.D.

DEFINITION [INDEX]: $|G|/|H|$

INDEX OF H IN G
LAGRANGE'S THEOREM IN PICTURES

All cosets have the same size, so $|H| |G|$

$H = \{ h_1, h_2, h_3, \ldots, h_m \}$

$H^z = \{ h_1^z, h_2^z, h_3^z, \ldots, h_m^z \}$

1-1 Map
LEMMA: Let G be a finite group. Then G has a generator set \(\Gamma \) s.t.
\[\left| \Gamma \right| \leq \log_2 |G| \]

PROOF: Pick any \(g_i \in G \) s.t. \(g_i \neq e \)

If \(g_1, g_2, \ldots, g_i \) are already picked

Pick \(g_{i+1} \not\in \langle g_1, \ldots, g_i \rangle = G_i \)

CLAIM: \(|G_i| / |G_{i-1}| \geq 2 \)

PROOF: \(G_{i-1} < G_i \). Apply Lagrange Thm.

\[\Rightarrow |G_{i-1}| \text{ is an integer multiple of } |G_{i-1}|, \neq 1 \]

In \(\leq \log_2 |G| \) step procedure

Stops with \(G_i = G \)
$\exists \log |G| \text{ SIZE GENERATOR SET (RECAP)}$

$\frac{|H_i|}{|H_{i-1}|} \geq 2$
PERMUTATION GROUPS

PERMUTATIONS OF \(A = 1-1 \) MAPS \(A \to A \)

NOTATION:
\[
\pi = \left(a_1, a_2, ..., a_n \right) \quad A = \{a_1, a_2, ..., a_n\}
\]

\(a_{\pi(i)} = a_{\pi(j)} \) FOR \(i \neq j \)

EXAMPLE: \(A = \{1, 2, 3\} \)

\[
\pi: \begin{array}{c}
 1 \rightarrow 1 \\
 2 \rightarrow 2 \\
 3 \rightarrow 3 \\
\end{array}
\]

\(\pi = (1 \ 3 \ 2) \)

CYCLE STRUCTURE:
(1)(23)

IN GENERAL

\[
\pi = (a, a_{\pi(i)}, a_{\pi(\pi(i))}, ...) (\ldots) (\ldots)
\]

ORDER OF CLAUSES DOES NOT MATTER
PERMUTATION GROUPS, CONTINUED

MULTIPLICATION:

\[\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 3 & 5 \end{pmatrix}, \quad \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix} \]

\[\sigma \cdot \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 3 & 1 \end{pmatrix}, \quad \pi \rightarrow 2 \sigma \rightarrow 4 \]

\[\sigma \cdot \pi (i) = \sigma(\pi(i)) \]

COMPOSITION OF BIJECTIONS IS A BIJECTION

INVERSE:

\[\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 3 & 5 \end{pmatrix}, \quad \pi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 3 & 5 \end{pmatrix} \]

\[\pi (i) = j \iff \pi^{-1} (j) = i \]

\[S_A = \text{GROUP OF ALL PERMUTATIONS ON A} \]

\[S_n = \text{GROUP OF ALL PERMUTATIONS ON } \{1, 2, \ldots, n\} \]
PERMUTATION GROUPS, CONTINUED

Definition: G is a permutation group if it is a group represented as a set of permutations on A. ($G \leq S_A$)

Warning: The same group may have more than one permutation representations:

\[S_3 = \{ (1 2 3), (1 3 2), (2 1 3), (2 3 1), (3 1 2), (3 2 1) \} \]

\[
\begin{array}{c|cccc}
 & e & r & r^2 & f_1, f_2, f_3 \\
\hline
 e & e & r & r^2 & f_1, f_2, f_3 \\
r & r & r^2 & f_2, f_3 & f_1 \\
r^2 & r^2 & f_2, f_3 & f_1 & f_2 \\
f_1 & f_1 & f_3 & f_2 & e \\
f_2 & f_2 & f_3 & f_1 & r \\
f_3 & f_3 & f_2 & f_1 & r^2 \\
\end{array}
\]

\[
\begin{array}{c}
 (1 2 3), (1 3 2), (2 1 3), (2 3 1), (3 1 2), (3 2 1) \\
 e, r, r^2, f_1, f_2, f_3 \\
\end{array}
\]

Different permutation representation of S_3.
TWO DIFFERENT PERMUTATION REPRESENTATIONS OF S_4

S_4 ON VERTICES

S_4 ON EDGES

\{1,2\} \{1,3\} \{1,4\} \{2,3\} \{2,4\} \{3,4\}

\{1,2\} \{1,3\} \{1,4\} \{2,3\} \{2,4\} \{3,4\}
THE GRAPH ISOMORPHISM PROBLEM

Definition: Graphs X_1 and X_2 are isomorphic if there is a 1-1 map $\pi: V(X_1) \rightarrow V(X_2)$ that takes edges into edges and non-edges into non-edges.

Graph-ISO: Given X_1, X_2, find out if they are isomorphic.

Recent: Graph-ISO \in \text{TIME}(n^{(\log n)^{O(1)}})$

László Babai
THE GRAPH AUTOMORPHISM PROBLEM

GRAPH-AUT: Given a graph X find a generator set for

$$\text{AUT}(X) \leq S_{V(X)}$$

NOTE: $\text{AUT}(X)$ may be exponentially large, but always has a
set Γ' of generators where

$$|\Gamma'| \leq \log_2 n! \sim n \log n$$

$n \overset{\text{def}}{=} |V(X)|$

$X = K_n$

$\text{AUT}(K_n) = S_n$

$\Gamma' = \text{set of all transpositions}$

$|\Gamma'| = (n)$
COLOR AUTOMORPHISM PROBLEM

COLOR-AUT: \text{INPUT} = \text{COLORED SET} ~ A
\Gamma \leq S_A

\text{OUTPUT} = \text{GENERATORS FOR THE SUBGROUP OF} ~ \langle \Gamma \rangle
\text{OF THE COLOR PRESERVING MAPS}

COLOR PRESERVING PERMUTATION:

\pi, \pi^0 \text{ ARE COLOR PRESERVING}
\pi \pi^0 \text{ IS ALSO}
\pi^{-1} \text{ IS ALSO}
POLY TIME REDUCTION

GRAPH-AUT \rightarrow COLOR-AUT

INPUT

\[
\begin{array}{c}
1 \\
3 \\
4 \\
2
\end{array}
\]

\[
\begin{array}{c}
1 \\
2 \\
3 \\
4
\end{array}
\]

INPUT

\[
\text{COLORED SET} = \{1, 2, 3, \ldots, 3, 4\}^2
\]

\[
\text{GROUP} = S_4 \text{-ON-EDGES}
\]

AUTOMORPHISM IFF PRESERVES COLORS

\[
\begin{array}{c}
1 \\
2 \\
3 \\
4
\end{array} \overset{\text{AUT}}{\rightarrow} \begin{array}{c}
1 \\
3 \\
4 \\
2
\end{array}
\]

\[
\begin{array}{c}
1 \\
3 \\
4 \\
2
\end{array} \not\overset{\text{NOT-AUT}}{\rightarrow} \begin{array}{c}
1 \\
3 \\
4 \\
2
\end{array}
\]
Lemma: Graph-iso reduces to Graph-out

Proof:

W.l.o.g. assume that X_1, X_2 are connected.

Determine $\text{Aut}(X_1 \cup X_2)$.

$\Gamma =$ generator set for $\text{Aut}(X_1 \cup X_2)$.

If any $g \in \Gamma$ swaps X_1 and X_2, then $X_1 \cong X_2$, otherwise $X_1 \not\cong X_2$.
WE HAVE RELIED ON:

IF \(G = \langle g_1, g_2, \ldots \rangle \) AND ALL \(g_i \) RESPECT

\[
\begin{array}{c|c}
\text{LEFT} & \text{RIGHT} \\
1 & 5 \\
2 & 6 \\
3 & 7 \\
4 & 8 \\
\end{array}
\]

\(g_1 \)

\(g_2 \)

\vdots

THEN ALL ELEMENTS OF \(G \) WILL RESPECT LEFT \| RIGHT

\[g = g_1^{-1} g_2 g_3 g_4 \ldots \]

DO NOT MIX LEFT–RIGHT
WE HAVE ALSO RELIED ON

\[X = X_1 \cup X_2 \]

IS AN AUTOMORPHISM MADE FROM
AND ALSO

1. IF \(\pi \in \text{AUT}(X, \cup X_2) \) AND \(v, \pi(v) \in X_2 \) THEN \(\pi(X_2) = X_2 \)

SO, UNDER IT SIDES MUST ALTERNATE

BUT: CAN WE RECOVER AN ISOMORPHISM FROM THIS? NOT ONLY ONE, BUT TWO!!

\[(x,w) \in E(X_2) \]
\[\pi(v), \pi(w) \in E(X_2) \]
\[\pi(w) \in X_2 \]
ALGORITHMS FOR PERMUTATION GROUPS

$G \leq S_n$, given by a set Γ of generators

$|G|$ can be large (up to $n!$), $|\Gamma| = n^{O(1)}$

- Determine properties of G (abelian, etc.)
- Size of G
- Is $\pi \in G$ (input: $G \leq S_n$, $\pi \in S_n$)
- Compute sub-group of G that respects certain structures
 - For G_1, G_2, determine $G_1 \cap G_2$

If answer is group, output is a set of generators
NOTIONS

STABILIZER SUBGROUP

\[G \leq S_n, \quad i \in \{1, \ldots, n^2\} \]
\[G_i = \{ \pi \in G \mid i \text{ does not move under } \pi \} \]
\[G_{i, i_2, \ldots, i_k} = \{ \pi \in G \mid \text{none of } i_1, \ldots, i_k \text{ moves under } \pi \} \]

\[G \leq S_n, \quad T = \{1, \ldots, n^2\} \]
\[G_T = \{ \pi \in G \mid \pi \text{ respects } T, T \} \]
GLOBAL STABILIZER OF T

OBSERVATION: LET \(T = \{t_1, t_2, \ldots, t_{n^2}\} \) THEN

\[G_{t_1, \ldots, t_k} \leq G_T \]

\[G_{t_1, \ldots, t_k} \overset{\text{def}}{=} G_{\{T\}} \]
POINT-WISE STABILISER OF T
CANONICAL GENERATOR SET FOR G

CONSIDER THE TOWER

\(\{ e \} = G \leq G_{i_3 \cdots n_1} \leq G_{i_1 i_2 \cdots n_2} \leq \cdots \leq G_{i_1} \leq G \)

NOTATION: \(H \leq G, \quad \{ Hz | z \in G \} = G : H \)

NOTATION: \(\{ Z_{i_1}, Z_{i_2}, \ldots, Z_{i_{1 \cdot n_1}} \} = \text{REPR}(G : H) \)

IF IT CONTAINS EXACTLY ONE REPRESENTATIVE FROM EVERY COSET

LET

\(C_1 = \text{REPR}(G : G_i) \)

\(C_{n-1} = \text{REPR}(G_{i_1 i_2 \cdots n_2} : G_{i_1 i_2 \cdots n_1}) \)

CANONCAL GENERATOR SET =

\(C_1 \cup C_2 \cup \cdots \cup C_{n-1} \)
PROPOSITION: CANONICAL GENERATOR SET IS A GENERATOR SET FOR G.

LEMMA: LET \(H \leq G \), \(\Gamma \) BE A GENERATOR SET FOR H. THEN
\[\Gamma \cup \text{REPR}(G:H) \]
IS A GENERATOR SET FOR G.

PROOF: EVERY \(x \in G \) IS IN SOME \(HZ \)
WHERE \(z \in \text{REPR}(G:H) \). SO \(x = h_{*}z \).
ALSO, \(h = g_{1}^{ \pm 1 } \cdots g_{k}^{ \pm 1 } \) WHERE \(g_{1}, \ldots, g_{k} \in \Gamma \).

PROOF OF THE PROPOSITION IS BY INDUCTION:

ASSUME WE ALREADY KNOW THAT
\[C_{n-1} \cup C_{n-2} \cup \ldots \cup C_{n-i+1} \]
is a gen. of \(G_{1,2,\ldots,i} \)
THEN
\[C_{n-1} \cup C_{n-2} \cup \ldots \cup C_{n-i} \]
is a gen. of \(G_{1,2,\ldots,i-1} \)
\[\text{REPR}(G_{1,2,\ldots,i} : G_{1,2,\ldots,i-1}) \]
CLAIM: \(|G_1 \cup G_2 \cup \ldots \cup G_{n-1}| \leq n(n-1)\)

Lemma: \(G \leq S_n\). Then \(|G:G_i| \leq n\)

Let \(O_i = \{1, \ldots, n^2\}\) be the set of all elements where \(G\) can move \(i\) (orbit of \(i\)).

CLAIM 2: \(|G:G_i| = |O_i| (\leq n)\)

Let \(j\) be such that \(\pi(i) = j\) for \(\pi \in G\) then \(\pi G_i = \{g \mid g(i) = j^2\}\)

- \(\forall g \in G_i, g(i) = (\pi h)(i) = j\), where \(h \in O_i\)
- If \(g(i) = j\) then \((\pi^{-1} g)(i) = i\)

So the \(\{g \mid g(i) = j^2\}\) is a left coset of \(G_i\) in \(G\).

\[# of left cosets = |O_i| = |G|/|G_i|\]

\[# of right cosets\]

Original claim trivially follows from lemma.