Quiz III (CS 205 - Fall 2019) (Solutions)

Name:
NetID:
Section No.:

For each of the following problems, use the space provided below the problem statement to write down your answer. Write clearly and concisely. There are 3 problems in total.

1. (10 pts) Consider the following statement

\[\text{If } Y \subseteq X \text{ then } \overline{X} \subseteq \overline{Y}. \]

Below is an incomplete proof of the statement. Complete the proof.

Proof: Assume that \(Y \subseteq X \). Recall that in order to show that \(\overline{X} \subseteq \overline{Y} \) we need to prove that

\[a \in \overline{X} \rightarrow a \in \overline{Y}. \]

Let \(a \) be an arbitrary element of the universe such that \(a \in \overline{X} \). This is equivalent to the statement

\[a \notin X. \]

(Now use the fact that \(a \notin X \) and \(Y \subseteq X \) to show that \(a \in \overline{Y} \). This would complete the proof)

Since \(Y \subseteq X \) and \(a \notin X \), \(a \) cannot be contained in \(Y \) and so \(a \notin Y \). This is equivalent to

\[a \in \overline{Y}. \]

This completes the proof

2. (10 + 10 = 20 pts) For each of the following statements, state whether you think the statement is True or False and provide an explanation for your answer.

 (a) Let \(A = \{a, b, c, d, e\} \) and \(B = \{1, 2, 3, 4, 5\} \). Then it is possible to define a function \(f : A \rightarrow B \) such that \(f \) is bijective.
 Solution: True. Consider the function \(f : A \rightarrow B \) such that
 \[f(a) = 1, f(b) = 2, f(c) = 3, f(d) = 4, f(e) = 5. \]
 Clearly \(f \) is a bijection.

 (b) Let \(U = \{1, 2, 3, 4, 5\} \) then there is a set \(S \subseteq U \) such that \(\emptyset \notin \text{pow}(S) \).
 Solution: False. Let \(S \subseteq U \) be an arbitrary subset of \(U \). Since \(\emptyset \subseteq S \), it must be the case that
 \[\emptyset \in \text{pow}(S), \]
 and so the statement is False.
3. \textbf{(20 pts)} There are 150 students in CS 205: 120 know Python, 40 know Rust, and 30 know both Python and Rust. How many student are there in CS 205 that know either Python or Rust?

\textbf{Solution:} Let A be the set of students who know Python, B be the set of students who know Rust. Then $A \cap B$ is the set of students who know both Python and Rust, and $A \cup B$ is the set of students who know either Python or Rust. Using the given data, we can conclude

$$|A \cup B| = |A| + |B| - |A \cap B| = 120 + 40 - 30 = 130,$$

and so the number of students who know either Python or Rust is 130.