**ABSTRACT**

Programming with tasks is a promising approach to write performance portable parallel code. In this model, the programmer explicitly specifies tasks and the task parallel runtime employs work stealing to distribute tasks among threads. Similar to multithreaded programs, task parallel programs can also exhibit data races. Unfortunately, prior data race detectors for task parallel programs either run the program serially or do not handle locks, and/or detect races only in the schedule observed by the analysis.

This paper proposes PTRacer, a parallel on-the-fly data race detector for task parallel programs that use locks. PTRacer detects data races not only in the observed schedule but also those that can happen in other schedules (which are permutations of the memory operations in the observed schedule) for a given input. It accomplishes the above goal by leveraging the dynamic execution graph of a task parallel program to determine whether two accesses can happen in parallel and by maintaining constant amount of access history metadata with each distinct set of locks held for each shared memory location. To detect data races (beyond the observed schedule) in programs with branches sensitive to scheduling decisions, we propose static compiler instrumentation that records memory accesses that will be executed in the other path with simple branches.

PTRacer has performance overheads similar to the state-of-the-art race detector for task parallel programs, SPD3, while detecting more races in programs with locks.

**CCS Concepts**

- Software and its engineering → Dynamic analysis; Software testing and debugging; Software verification;

**Keywords**

Data Races, Intel TBB, Fork Join Programs

1. **INTRODUCTION**

Task parallelism is an effective abstraction to write performance portable code. In a task parallel programming environment, the programmer specifies the tasks and the work stealing runtime distributes these tasks to the threads. A task parallel program can provide scalable speedups when the program is executed on a machine with different core/thread count as the runtime dynamically balances the load between the threads. Task parallel frameworks like Cilk [17], Intel Threading Building Blocks (TBB) [30], Habanero Java [6], X10 [7], and the Java Fork-Join framework [24] have become mainstream. Given the promise of performance portable code, there are initiatives in teaching parallelism through task parallel programming models [19].

Task parallel programs can have data races, similar to multithreaded programs. A program exhibits a data race when there are multiple accesses to a shared memory location, at least one of them is a write, and there is no ordering between these accesses. In the absence of locks, a data race occurs when these accesses are not ordered by task management (spawn/sync) constructs. In the presence of locks, a data race occurs when two parallel accesses (one of which is a write) are not protected by a common lock. Similar to multithreaded programs, data races in task parallel programs are usually indicators of program errors. The behavior of the program is dependent on the memory model in the presence of data races.
Further, it can also cause non-deterministic execution. Figure 1 illustrates an example task parallel program with a data race.

In the terminology of Netzer and Miller [33], data races can be classified into two categories: apparent races and feasible races. Data races that appear to occur in an execution of a program primarily considering the parallel constructs but without taking the actual computation into account are termed apparent races. Data races that occur taking into account the computation, synchronization, and parallel constructs are termed feasible races. An apparent race may not be a feasible race in some scenarios where operations in critical sections influence branches. Depending on how critical sections are scheduled, the computation itself may change when the tasks are scheduled in a different order. However, every apparent race is also a feasible race for a class of task parallel programs called Abelian programs [3], which have commutative critical sections. Identifying feasible races is a hard problem [8, 24, 33]. Detectors that aim to detect feasible races need to perform interleaving exploration, which is practically infeasible. Hence, we focus on the detection of apparent races in this paper as task parallel programs have structured parallelism.

Data race detectors can be classified into three categories based on their detection abilities: per-program, per-input, and per-schedule detectors. Per-program detectors detect possible races for all inputs and schedules for a given program. Although per-program detectors are appealing in theory, they can report a large number of false positives in practice because of approximations in the underlying static analysis [46]. Per-input detectors detect possible races in various schedules for a given input when the programs do not use locks [15, 30, 38]. Finally, per-schedule detectors detect data races in the observed schedule. They typically need to be coupled with interleaving exploration to detect races that can occur in other schedules for the same input. Further, data-race detectors can also be classified into offline, on-the-fly, or hybrid detectors depending on whether the race is detected with a postmortem analysis, during program execution, or a combination of them, respectively.

Our goal is to detect data races in task parallel programs with the following three objectives. First, the detector should detect races in the presence of locks because frameworks like Intel TBB [19] and Cilk [17] provide various lock implementations. Second, the detector should detect races in the observed schedule and also possible races in other schedules for a given input to either minimize or obviate the need for interleaving exploration. Third, the detector should use multiple cores available on modern processors to enable its usage with long running programs.

Although data race detection is a well-studied topic for multithreaded programs, existing detectors do not satisfy our goals. FastTrack [16] is a vector-clock based detector that detects races in schedules that follow the observed happens-before ordering in multithreaded programs. When we repurpose FastTrack for tasks, FastTrack’s vector clock metadata with each shared memory location is proportional to the number of tasks, which makes it impractical for task parallel programs that create a large number of tasks. Our implementation of FastTrack aborted with out-of-memory errors with many applications (see Section 5). Prior research has also investigated numerous techniques to detect races in task parallel programs [8, 15, 30, 37, 38]. SP-Bags [13], ESP-Bags [37], and SPD3 [38] leverage the series-parallel structure of a task parallel execution to detect races per-input for task parallel programs that do not use locks. SPD3 with support for isolated blocks [38] and ALL-SETS [8] detect data races per-schedule in task parallel programs. Both these approaches can detect races per-input when the program has commutative critical sections (i.e., Abelian programs). However, SPD3 does not support locks and ALL-SETS runs the detector serially. In this paper, we explore if it is possible to combine SPD3 and ALL-SETS to attain our objectives.

Inspired by SPD3 [38] and ALL-SETS [8], we propose an on-the-fly dynamic data race detector, PTRacer, for task parallel programs with locks. PTRacer uses the dynamic program structure tree (DPST) representation from SPD3 to determine whether two accesses can happen in parallel. It borrows the idea of tracking the set of locks held before an access with each entry in the metadata space from ALL-SETS. The key challenge is in maintaining appropriate metadata when there are multiple readers and writers to a given shared memory location to enable effective and efficient detection of races.

Further, branch statements in a task parallel program can be influenced by scheduling decisions when the program uses locks. Such branches are called schedule-sensitive branches (SSB) [22]. In the presence of SSBS, the dynamic trace observed by the analysis may not have memory operations from all schedules (e.g., from the path not-taken at the branch statement). We explore if it is possible to detect races that happen in other schedules in the presence of SSBS.

To accomplish our objectives, we designed PTRacer with three components: (a) static analysis and instrumentation component to instrument shared memory accesses and identify accesses in the other path with simple branch statements, (2) a parallel dynamic race detection component that extends SPD3 to handle locks, and (3) a diagnosis component that classifies some of the races reported by the parallel dynamic analysis as infeasible if the branch is not schedule sensitive. Figure 2 provides an overview of the various components in PTRacer.

The static analysis and instrumentation component of PTRacer has two goals: instrument shared memory accesses and identify accesses that can be executed in the other path at a branch statement. PTRacer uses a compiler pass to instrument the program with calls to the dynamic race detection library. The compiler pass identifies branch statements and records the memory accesses executed in the other path at a simple branch statement with calls to the race detection library. When the branching structure involves loops or

![Figure 2: Workflow of our parallel data race detection algorithm for task parallel programs that use locks.](image-url)
has nested branches, the compiler pass informs the user that the dynamic race detection will be restricted to the detection of apparent races in the observed schedule and schedules that are permutations of memory operations in the observed schedule.

The dynamic data race detection component of PTRacer constructs the DPST as the program executes and performs dynamic data race detection when the race detection library calls execute. Hence, the race detection happens in parallel. PTRacer maintains two reads and two writes with each distinct set of locks held before an access to a shared memory location in the metadata space for each shared memory location. Maintaining information about two reads and a single write is sufficient when accesses are performed without holding any locks.

When there are multiple writes to a shared memory location with the same set of locks held, PTRacer maintains two write operations so that all other parallel write operations to the same location are in the subtree under the least common ancestor (LCA) of the two writes in the DPST. Any future write or a read operation that may execute in parallel with any of the not-maintained accesses will execute in parallel with at least one of the two writes maintained in the metadata space. The dynamic data race detector reports a race when two accesses are not protected by a common lock.

The races reported by the dynamic race detector are either true apparent races that involve operations in the observed schedule or possible apparent races that involve races between operations from the observed schedule and operations in the not-taken path at a branch statement.

Finally, the diagnosis component of PTRacer filters out possible races by checking the schedule sensitivity of the branch resulting in the race. The diagnosis component runs the program again to obtain a detailed trace. It encodes the detailed trace and the inverted branch condition of the schedule sensitive branch involved with the possible apparent race as a first-order logic formula and checks its satisfiability (similar to prior work [22][23][27]). If the formula is satisfiable, then the diagnosis component reports the race as an apparent race to the user.

PTRacer detects apparent races for a given input for Abelian programs similar to ALL-SETS. When there are multiple races involving a shared memory location, PTRacer reports a single race to the user. PTRacer detects apparent races in the observed schedule and in schedules that are permutation of the memory operations in the observed schedule for non-Abelian programs. Some of these races may not be feasible if the computation in the program forbids them. Even the infeasible apparent races are likely program errors as task parallel programs typically have structured communication. The race detection involving operations from non-taken paths is best-effort (i.e., it can miss races with SSBS) due to the limitations of our static analysis.

Our prototype detector PTRacer detects data races in Intel TBB programs that use locks. The prototype detects all races in our test suite, which has unit tests with locks, without false positives and without requiring interleaving exploration. In contrast, FastTrack misses many races and SPD3 reports false positives as it does not handle locks. PTRacer is usable with long-running applications and has performance overhead similar to SPD3.

2. BACKGROUND

This section provides background on Dynamic Program Structure Tree (DPST) representation of a task parallel execution to identify parallel accesses. As we use the DPST and build on SPD3 [38], we also provide a brief background on the SPD3 data race detector for task parallel programs.

2.1 Dynamic Program Structure Tree

The execution of a task parallel program results in a series-parallel execution graph. The series-parallel execution graph can be used to determine whether two accesses by different tasks can logically execute in parallel [8][15][30]. The graph can be used to find apparent races in other schedules when these programs do not use locks. However, the program has to be executed serially, which results in performance overheads.

To address the problem of serial execution with data race detection, Raman et al. [38] proposed an approach to check whether two accesses can logically execute in parallel using an ordered tree called the Dynamic Program Structure Tree (DPST). The DPST captures the dynamic parent-child relationship between tasks, which enables parallel race detection with SPD3 [38].

The DPST consists of three types of nodes: (a) step nodes, (b) finish nodes, and (c) async nodes. A step node in the DPST represents the maximal sequence of instructions without any task spawn (for task creation) and sync (join) statements. All computation and memory accesses occur in the step nodes. Hence, every memory access has a corresponding step node associated with it. Further, the step nodes are always leaf nodes in the DPST.

The async nodes capture the spawning of a task by a parent task. The descendants of an async node execute asynchronously with the remainder of the parent task. A finish node is created when a task spawns a child task and waits for the child (and its descendants) to complete. A finish node is the parent of all async, finish and step nodes directly executed by its children or their descendants. A node’s children in the DPST are ordered left-to-right to reflect the left-to-right sequencing of computation in their parent task.

The DPST’s construction ensures that all internal nodes are either async or finish nodes. The path from a node to the root and the left-to-right ordering of siblings in the DPST do not change even when nodes are added to the DPST during execution. The construction of the DPST ensures that two step nodes S1 and S2 (assuming S1 is to the left of S2) can execute in parallel if the least common ancestor of S1 and S2 (i.e., LCA(S1, S2)) in the DPST has an immediate child A that is an async node and is also an ancestor of S1.

Consider the example task parallel program in Figure 1 with three tasks T1, T2, and T3. Figure 3 presents the DPST after all tasks and instructions in the program in Figure 1 have executed. There are three step nodes: S1, S2, and S3. There are two finish nodes: F11
that corresponds to the implicit finish with the main task and F12 that corresponds to the collection of tasks T1 and T2 followed by a sync statement. The step nodes S2 and S3 can occur in parallel since the LCA (S2, S3) is F12 and its left child is an async node. In contrast, step nodes S1 and S2 cannot occur in parallel since the LCA (S1, S2) is F11 and its left child that is also an ancestor of S1 is S1, which is not an async node. Similarly, step nodes S1 and S3 cannot occur in parallel.

2.2 SPD3 Race Detector

Any dynamic race detector needs to determine if two accesses (at least one of them is a write) can happen in parallel and track accesses to the same location. SPD3 uses the DPST to determine if two accesses can occur in parallel. It maintains shadow memory for each memory location that tracks tasks that have accessed the same location.

Rather than maintaining information about every access to a shared memory location by tasks, SPD3 maintains a total of two reads (r1 and r2) and a write (w1) with every shared memory location in shadow memory. It is sufficient to maintain information about one write as all other writes should either occur in series or constitute a data race. However, there can be multiple readers and it is necessary to maintain information about them. When there are multiple parallel readers to a location, SPD3 stores two reads r1 and r2 such that the subtree under LCA (r1, r2) in the DPST includes other reads. In contrast to vector clock based detectors, SPD3 maintains constant number of access history entries with each monitored shared memory location irrespective of the number of tasks.

SPD3 detects races for a given input by examining a single trace provided the task parallel program does not use locks. Next, we describe how to handle locks and propose a technique to detect races not only in the current trace but also in other schedules for a given input.

3. APPROACH

Our goal is to design an on-the-fly data race detector for task parallel programs with the following attributes: (1) runs in parallel, (2) handles programs that use locks, and (3) detects data races that occur in different schedules for a given input by examining a single trace. We do not need to store long traces with an on-the-fly detector. A parallel data race detector reduces performance overheads by leveraging multi-cores. Handling locks enables us to detect races in applications written with frameworks such as Intel TBB and Cilk that support locks. Detecting races that can happen in other schedules by examining a single schedule for a given input either minimizes or obviates (in the best case) the need for interleaving exploration.

We are primarily focused on detecting apparent races, which are races that appear to occur taking into account the parallel constructs in the program. In the presence of critical sections, some of these apparent races may not be feasible when the actual computation performed by the task is considered along with the parallel and synchronization constructs. Detecting feasible races typically requires interleaving exploration and covering all interleavings is not possible in practice. However, every apparent race is a feasible race for a class of programs (i.e., Abelian programs) with commutative critical sections.

When the program contains non-commutative critical sections, we investigate if it possible to detect races that can happen in other schedules to minimize the need for interleaving exploration. In such scenarios, our goal is to detect apparent races that can happen in other schedules, which perform the same shared memory accesses but possibly in a different order, for a given input. This guarantee is similar in spirit to the guarantees aimed by predictive testing techniques for multithreaded programs.

In the presence of critical sections, the branch statements in the program can also be influenced by the scheduling of critical sections. Such branches are called schedule sensitive branches (SSBs). A schedule observed by the dynamic analysis may not contain memory accesses from the not-taken path of a schedule sensitive branch. We propose a static instrumentation technique to record memory accesses that will be executed in the not-taken branch. This approach enables us to detect apparent races that can occur in different schedules of a program with SSBs for the same input without requiring interleaving exploration. To filter false positives when the branch is not schedule sensitive, we encode the trace and the inverted branch condition as a first-order logic formula and check its satisfiability.

Three components of our proposed detector. Our proposed detector PTRacer consists of three components to accomplish the above goals: (1) static analysis and instrumentation component to instrument the program with calls to the dynamic race detection library to construct the DPST, record shared memory accesses in the presence of branches, and to detect races, (2) a parallel dynamic analysis component that executes when the task parallel program executes and detects races, and (3) a diagnosis component that checks the feasibility of the reported races involving memory accesses from the not-taken path at a branch statement. Figure illustrates the three components of PTRacer, which we describe in detail below.

3.1 Static Instrumentation Component

The static analysis and instrumentation component has three objectives: (1) add instrumentation to identify task management constructs to build the DPST at runtime, (2) add instrumentation to identify shared memory accesses and lock operations to perform
dynamic race detection, and (3) add instrumentation to identify
shared memory operations that are possibly executed in the other
path in the presence of a schedule-sensitive branch statement, which
is inspired by a similar attempt for property-driven pruning with
dynamic partial order reduction [48].

The static analysis and instrumentation phase can be performed
either on the source code or within the compiler. We perform
this phase within the compiler for mainly two reasons: (a) the
compiler already performs various analyses to identify thread local
accesses and the branch statements, and (b) the instrumentation can
be performed on optimized code, which reduces the performance
overhead of race detection.

The compiler pass that adds calls to the race detection library to
identify task management constructs and shared memory accesses is
straightforward, which we omit for space constraints. The interes-
ting aspect is the addition of instrumentation to identify memory
accesses performed in both the taken and the not-taken paths in the
presence of schedule sensitive branches. Our algorithm to record
memory accesses is described below. First, the compiler pass iden-
tifies conditional and unconditional branch statements and their
corresponding join statements. Second, the compiler pass identifies
the set of memory operations performed, the set of locks acquired
and released before every memory operation in the taken and the
not-taken branch from the beginning of the branch for each branch
statement and its corresponding join statement. If the branch condi-
tion does not dominate either the memory access or the lock variable,
then we need to perform additional work to make these accesses
visible in the other branch. In such scenarios, we add the backward
static program slice of the memory access and/or the lock variable
in the other branch. Finally, the compiler inserts calls to the runtime
library to record the memory operation performed in the other path.
If a memory access \( A \) is written in the else-block of a schedule
sensitive branch with \( L_a \) locks acquired and \( L_r \) locks released from
the beginning of the else-block till memory operation \( A \), then the
compiler introduces a runtime call \( \text{RecordWr}(A, L_a, L_r) \) in the
if-block.

Figure 3 shows the additional \( \text{RecordWr} \) and \( \text{RecordRd} \) in-
strumentation in the if-branch and the else-branch. In the if-branch,
the additional \( \text{RecordWr} \) and \( \text{RecordRd} \) instrumentation corre-
spond to memory accesses in the else-branch. This instrumentation
enables us to detect data races that can occur with operations in the
else-branch even when the trace observed during the dynamic
analysis contains only operations from the if-branch.

Limitations. We primarily focus on simple branch statements
that are not nested and are not part of loops to record memory
accesses from the not-taken path. Our static analysis informs the
user about the presence of non-nested branches and branches that
are part of loops. In the presence of such branches, our framework
still detects apparent races that occur in other schedules whose
memory operations are a permutation of the memory operations in
the observed trace. The taken and not-taken paths at a branch can
include function calls provided it is non-recursive without nested-
branches and loops. We chose this design point to avoid false
apparent races. However, our race detector will miss some races
given these limitations.

3.2 Parallel Dynamic Data Race Detector

\text{PTRacer} detects data races when the program executes the
library calls introduced by the static instrumentation component. As
tasks execute in parallel, the race detection also happens in parallel.
The dynamic race detector component of \text{PTRacer} maintains two
pieces of information at runtime: the DPST and the metadata. The
DPST is constructed at runtime and queried to determine if two
accesses can occur in parallel. The metadata is maintained with
each shared memory location that provides information about prior
accesses by various tasks.
Metadata design. A naive approach to detect apparent races (in the observed schedule and other schedules involving the same memory operations) would maintain a list of accesses performed by various tasks with each shared memory location. As each access to a shared memory location can occur with different sets of locks held, the access history should also maintain information about the set of locks held (lockset) before performing a memory access. However, such an approach would make the metadata proportional to the number of dynamic memory accesses and is infeasible in practice.

Our contribution is in designing a dynamic data race detection algorithm that maintains a constant number of access history entries, which is independent of the number of tasks and the number of dynamic memory accesses, while handling locks. Our metadata for each shared memory location contains four access history entries (step nodes of two reads: \( R_1 \) and \( R_2 \), and two writes: \( W_1 \) and \( W_2 \)) for each distinct set of locks held before the access. Although the size of the metadata is proportional to the number of distinct sets of locks held for each memory location, we observe in practice that each shared memory location is accessed with similar sets of locks. In summary, the access history with each shared memory location can be conceptually viewed as an array of data nodes, where each data node contains the unique lockset and step nodes corresponding to two reads \((R_1, R_2)\) and two writes \((W_1, W_2)\).

Metadata checks on a shared memory access. Figure 5 provides the algorithm for checking the metadata on a shared memory access. The algorithm iterates over all access history entries corresponding to each lockset in the metadata space. First, the algorithm checks if the intersection of the lockset of the current access and each lockset in the metadata space is empty. If the intersection is empty, two accesses have been performed without a common lock and PTRacer reports a race if two accesses can occur in parallel and at least one of them is a write.

Updating the read metadata. After the check, the algorithm in Figure 5 updates the metadata corresponding to the appropriate lockset. If the current access is a read access, then the metadata is updated similar to SPD3 except that the access history entries for a particular lockset are updated. If the current read access is in series with both the reads \((R_1, R_2)\) corresponding to the current lockset, then \( R_1 \) is set to the current access and \( R_2 \) is set to null (a unique empty value). When there are multiple readers that can execute in parallel \( i.e. \), two existing readers \( R_1 \) and \( R_2 \) in the metadata space and current access, PTRacer maintains two reads in the metadata space such that the subtree under \( LCA(R_1, R_2) \) includes all reads similar to SPD3. The key insight is that any future access that can have a data race with the not-stored reads will also have a data race with \( R_1 \) and/or \( R_2 \).

Updating the write metadata for a lockset. Updating the metadata in the presence of write operations and locksets requires some thought in comparison to SPD3. When writes are performed without locks, any two parallel writes is a data race. When tasks use locks, two writes can happen in parallel but may be protected by the same lock. Hence, they do not constitute a data race. When PTRacer sees multiple parallel writes (current access, \( W_1 \) and \( W_2 \) in the metadata space) with the same lockset, it needs to identify two writes to maintain in the metadata space. Similar to multiple parallel reads, PTRacer maintains two writes in the metadata space such that the subtree under \( LCA(W_1, W_2) \) includes all writes. Any future access that can race with one of the not-stored writes will also race with at least one of \( W_1 \) or \( W_2 \). Maintaining only two reads and two writes with each distinct set of locks enables PTRacer to detect apparent races both in the observed schedule and other schedules for the same input. Figure 6 illustrates the metadata for shared memory variables, checks, and the metadata update actions performed after each statement in the observed trace.

3.3 Diagnosis Phase

The parallel data race detection algorithm described above reports two kinds of apparent races, which we call true races and possible races. A true race is a data race that occurs between the operations of the observed trace without involving memory operations from the RecordWr and RecordRd instrumentation. A possible race is a data race that involves shared memory operations from the other-branch instrumentation. If the branch is not schedule sensitive, then these possible races will never manifest for a given input. Hence, we propose a diagnosis phase to identify whether the branch is schedule sensitive when our parallel race detection algorithm reports a possible race. We divide the diagnosis phase into two components: execution trace generator that generates per-task execution traces for the reported possible race, and a constraint generator that checks if the branch statement responsible for the reported possible race is schedule sensitive by transforming the trace into a first-order logic
form and checking its satisfiability using an SMT solver. Our constraint generator and schedule sensitivity checker is inspired by prior work [22][27]. We enforce an ordering corresponding to the possible race and repurpose prior approaches to a task-based context.

**Per-task execution trace generator.** When the dynamic race detector reports a possible race, we enforce the schedule corresponding to the possible race. This step is necessary because the dynamic race detection algorithm does not log the trace as it wants to detect races with a low performance overhead. We also generate canonicalized per-task execution traces. The canonicalized per-task execution trace captures all loads/stores, synchronization constructs, and the branch condition corresponding to the possible race. To check if the branch is schedule-sensitive, we need to check if the negation of the branch condition involved in a possible race is satisfiable. Figure 7(a) shows the per-task trace and the canonicalized trace for an execution of the program in Figure 4.

**Constraint generator.** Using the per-task traces, we construct a first-order logic formula to check for the satisfiability of the negated branch condition. Inspired by prior work [27], we create two types of variables: order variables and value variables. The order variables are used to encode the position of the operation in the per-task trace. The value variables are used to symbolically encode the read operations. Since we are specifically interested in checking the satisfiability of the negated branch condition, we create value variables for only those reads that directly or indirectly influence the branch condition. We generate a formula $\Phi$ that relates these order and value variables using the task-parallel execution constraints and checks the negated branch condition.

$$\Phi = \phi_{oo} \land \phi_{sync} \land \phi_{rw} \land \phi_{ss} \land \phi_{br}$$

where $\phi_{oo}$ is the constraint that encodes the order of execution of operation in a given task, $\phi_{sync}$ is the constraint that represents the possible orders of execution among the synchronization statements among tasks, $\phi_{rw}$ is the constraint that encodes the data flow between various accesses to the same location, $\phi_{ss}$ is the constraint that represents the parent-child relationship between tasks, and $\phi_{br}$ is the constraint representing the negated branch condition. Satisfiability of $\Phi$ implies that the branch involved in a possible race is a schedule sensitive branch and the reported race is indeed feasible.

**Generating the constraints.** The per-task order constraints ($\phi_{oo}$) ensure that the operations within the same task are ordered. The synchronization constraints ($\phi_{sync}$) order the lock and unlock operations performed by the tasks on the same lock. Let $L_{i,m}/U_{i,m}$ and $L_{j,p}/U_{j,q}$ be two lock/unlock order variables from two different tasks ($i \neq j$) on the same lock. There are two possible orderings in this scenario. When the lock statement from task $i$ is executed first, then $L_{j,p}$ is executed only after the unlock statement $U_{i,m}$, which results in an ordering constraint $U_{i,m} < L_{j,p}$. Otherwise, the lock statement from task $j$ is executed first, which results in an ordering constraint $U_{j,q} < L_{i,m}$.

**4. IMPLEMENTATION**

This section describes the metadata encoding and the implementation optimizations that we use to reduce the performance overhead of data race detection.

**4.1 Metadata Organization**

The metadata for each shared memory location is stored in shadow memory. We implement shadow memory using a two-level lookup trie data structure as it provides the ability to shadow every address in memory efficiently. A trie is a page-size table structure where each level is accessed using few bits from the address whose metadata is being looked up. PTracer maps a 48-bit virtual address space using a two-level trie [31]. The first-level trie mappings are allocated at program initialization and the second level entries are allocated on demand when a memory location is touched for the first time, which reduces the memory overhead.

**Metadata encoding.** The metadata associated with a shared memory location is a list of four access history entries for each lockset. Maintaining linked data structures in the shadow space increases the performance overhead. In practice, we observe that
most shared memory locations are accessed with a small number of locksets. Hence, we accelerate the common case (i.e., accesses with few locksets) by organizing the entry in shadow memory as a constant-sized array of data nodes. Each data node represents the access history for a given lockset. If a shared memory location is accessed with more locksets than the constant-sized array of data nodes, then we resort back to the slower list representation for that shared memory location. Each data node contains five 64-bit values: a 64-bit value encoding the lockset, two 64-bit values for representing the step nodes performing the reads: \( R_1 \) and \( R_2 \), and two 64-bit values for representing the step nodes performing the writes: \( W_1 \) and \( W_2 \). These implementation techniques enabled us to successfully run parallel data race detection on long running programs.

4.2 Optimizations

We observed three major opportunities for reducing the performance overhead in our implementation: (1) choosing appropriate data structures for the DPST, (2) identifying redundant checks, and (3) identifying redundant LCA queries on the DPST. We describe these optimizations below.

Overlay DPST in a linear array. Rather than building the DPST using a linked n-ary tree data structure, we optimize the layout of the DPST by overlaying the tree in a linear array of nodes. We maintain parent-child relationship in such an overlay by maintaining the index of the parent node with each child node. We achieve better locality, avoid pointer chasing code, and avoid the cost of frequent dynamic allocations by overlaying the DPST in a linear array of nodes. This representation reduces the overhead of a single LCA query when compared to the linked data structure because it eliminated several pointer indirections in the traversal of the DPST.

Access caching. We observed that there were multiple accesses to the same location with the same lockset from a given step node. However, we were not able to prove that they are redundant accesses through static analysis. We observe that when there are multiple accesses of the same type with the same lockset in a step node, then it is sufficient to perform the check once and store the metadata for only one access. We reduce the overhead of metadata checking and propagation by caching accesses performed in the task, and not performing the check on accesses that have an entry in the cache with the same lockset and access type.

LCA caching. LCA queries are expensive even after optimizing the layout of the DPST because each query can traverse a large number of nodes. Moreover, our data race detection algorithm performs LCA queries on each access to check and propagate metadata. We observe that even when previously unseen addresses are being checked, there are opportunities to cache LCA queries. LCA queries check whether two step nodes can occur in parallel. When these step nodes have been previously accessed in a LCA query, it is not necessary to perform the query again as the series-parallel relationship between the tasks does not change as nodes are being added to the graph. Hence, we cache the frequently performed LCA queries to reduce the overhead resulting from the repeated traversals of the DPST. These optimizations not only reduced the overhead of our implementation but also reduced the overhead of SPD3, the baseline that we compare against in our evaluation.

5. EXPERIMENTAL EVALUATION

This section describes our prototype, implementation optimizations, benchmarks, and experimental evaluation to measure the effectiveness and the performance overhead of data race detection.

### Prototype

Our prototype PTRacer is designed for C++ programs that use Intel Threading Building Blocks (TBB) for task parallelism. It includes a compiler intermediate representation instrumenter, a race detection library that performs runtime race detection, an execution trace generator, and a constraint generator. The instrumenter is implemented as a compiler pass in Clang++LLVM-3.7. It inserts calls to the race detection library at shared memory accesses, synchronization statements, and task management statements. We use the demangled name of the library calls to identify synchronization and task management statements. The instrumenter also identifies accesses performed in both the taken and not-taken paths of a branch statement.

The race detection library is written in C++. The runtime library builds the DPST, performs metadata propagation and checks for data races as described in Figure 5. The constraint generator is written in Python. It parses the per-task traces, creates order and value variables, and constructs the first-order logic formula to check the feasibility of a schedule sensitive branch. PTRacer uses Z3 [10] to check the satisfiability of the generated formula. Our tool is open source [49].

### Benchmarks

We evaluate the performance overheads of our prototype with thirteen TBB applications, which include five TBB-based applications from Parsec [3], five geometry and graphics applications from the problem based benchmark suite (PBBS) [42], and three applications from the Structured Parallel Programming book [29]. The PBBS applications were originally implemented using Cilk [7]. We translated these applications to use Intel TBB for task parallelism. Table 1 lists the applications used and their important features.

### Evaluation environment

The experiments were performed on a 4.0GHz four-core Intel x86-64 i7 processor, with 64 GB of memory running 64-bit Ubuntu 14.04.3. Each benchmark was executed five times and the reported performance overhead is calculated by taking the average of the five executions. We use geometric mean to report average slowdown in our evaluation.
**Effectiveness in detecting data races.** To test the effectiveness of our prototype in detecting races, we have built a test suite of 120 unit tests that include racy and non-racy programs with and without locks and schedule sensitive branches. There were 60 races in total in the test suite. **PTRacer** successfully detects all the races in the racy suite without any false positives. In contrast, **SPD3** detected 46 races, reported 40 false positives, and missed 14 races. We ran **SPD3** multiple times to detect races in the presence of schedule sensitive branches. There were 14 races that were not detected by **SPD3** even after performing multiple executions.

**Performance overhead in comparison to SPD3.** Figure 8 reports the performance overhead of **PTRacer** and **SPD3** when compared to a baseline without any instrumentation. We use LCA caching by default even with **SPD3**. There are two bars for each benchmark (smaller bars are better as it reports overheads). The average performance overhead of **PTRacer** is 6.7×. Although the average overhead is 6.7×, four applications, **streamcluster**, **swaptions**, **delRefine** and **rayCast** have overhead greater than 10×. Among them, **streamcluster** and **swaptions** have large number of race detection checks and they perform a large number of LCA queries. Applications, **delRefine** and **rayCast** have relatively fewer accesses but have no locality in their LCA queries and race checks (see Table 1). The performance overhead of **SPD3** is 5.4×. **SPD3** maintains constant metadata for every shared memory location and does not detect data races in programs that use locks. **PTRacer** has similar overheads when compared to **SPD3** and detects more races in the presence of locks and schedule sensitive branches.

**Performance overhead in comparison to FastTrack.** We compared the performance overhead of our implementation of FastTrack for tasks when compared to a baseline without any instrumentation. FastTrack aborted with out-of-memory errors with three applications, **streamcluster**, **delRefine** and **raycast**. These applications create many tasks and have a large number of shared accesses that prevent the use of optimized version of vector clocks. The average performance overhead of FastTrack for other applications, which did not abort with out-of-memory errors, is 14×.

**Performance impact of record instrumentation from the not-taken path.** Figure 9 reports the performance overhead of **PTRacer** with and without the record instrumentation to capture operations from both the paths of a branch statement. The record instrumentation has increased the overhead of data race detection from 6.3× to 6.7×. With a nominal increase in performance overhead, the record instrumentation enables detection of races in the presence of schedule sensitive branches.

**Performance benefits with access caching.** Figure 10 reports the effect of the access caching optimization on the performance overhead of **PTRacer**. The access caching optimization reduces the average performance overhead from 8.5× without access caching
There are several proposals for static race detection [1, 13, 32, 35]. Approaches often miss data races while trying to reduce the overhead. Reduce the overhead of race detection through sampling. But these approaches have significant overhead reduction in overhead because of the large number of unique LCA queries. Application raycast does not benefit much from LCA caching because of the large number of unique LCA queries.

Performance benefits with LCA caching. Figure 11 reports the performance overhead of PTRacer with and without LCA caching when compared to a baseline without any instrumentation. On average, LCA caching reduces the performance overhead from 8.8 × without LCA caching to 6.7 ×. All applications except raycast see a significant reduction in overheads as there are fewer unique LCA queries. Application raycast, does not benefit much from LCA caching because of the large number of unique LCA queries.

Performance overhead for different number of threads. Figure 12 reports the performance overhead of PTRacer when executed by restricting the task parallel runtime to use 1, 2, and 4 threads. The average overhead when executed with 1, 2, and 4 threads is 6.8 ×, 6.6 × and 6.7 × respectively. The average overhead is almost constant with increasing core count, which indicates that our approach scales well when the program is executed on machines with larger number of processors.

6. RELATED WORK

Data race detection in multithreaded programs. There is a large body of work on dynamic data race detection in thread based parallel programs [12, 15, 34, 41, 48]. FastTrack [16] represents the state-of-the-art in dynamic data race detection for threaded programs. FastTrack detects races in the given execution by tracking happens-before relations between shared memory accesses. The overhead of race detection with FastTrack can be high when executed on programs that create many threads as the metadata is proportional to the number of threads. Further, FastTrack only detects races that occur in a given schedule. Eraser [40] uses a lockset-based approach and checks for errors in locking discipline. Lockset-based approaches often have lower performance overhead when compared to happens-before based approaches, but can report false positives.

There are dynamic approaches [5, 11, 14, 15, 28] that attempt to reduce the overhead of race detection through sampling. But these approaches often miss data races while trying to reduce the overhead. There are several proposals for static race detection [1, 13, 15]. While static detection approaches are appealing as they have no runtime performance overhead, they can produce a large number of false positives.

Predictive testing for threaded programs. There are also numerous approaches that attempt to detect races and other concurrency errors feasible in a different schedule derived from a trace of a multithreaded program [20, 21, 43, 55, 57]. Predictive testing ideally can detect feasible races for a given input as long as all operations that can occur in different thread schedules occur in the observed trace. However, most predictive testing techniques bound the instruction window (up to 4K instructions) to make it practical. PTRacer provides guarantees similar to an ideal predictive testing by leveraging the structure of the task parallel execution and by maintaining appropriate metadata. Further, it detects races that can occur in other schedules in the presence of schedule sensitive branches using record instrumentation.

Data race detection in task parallel programs. The approach proposed by Mellor-Crummey et al. [30] and nondeterminator [15] were seminal in proposing the detection of apparent data races in task parallel programs using the series-parallel execution graph. Subsequently, these techniques have been enhanced to handle locks [8], to handle task graphs in Habanero-Java [37], and to detect races without serial execution with SPD3 [36, 38]. Our proposed research uses the DPST representation in SPD3 and is inspired by the access histories in the ALL-SETS algorithm for Cilk [8].

Determinacy checkers. In the absence of synchronization, data race freedom ensures determinism [4, 26]. Even in deterministic programs there can be a large number of schedules for different inputs. There are proposals that memoize past schedules [9] and limit the execution to a set of input covering schedules [2]. Tardis [26] checks for determinism by maintaining a log of accesses and identifying conflicting accesses between tasks. In contrast, our approach detects data races both in the presence and absence of synchronization operations.

7. CONCLUSION

This paper addresses the problem of detecting apparent data races in task parallel programs with a parallel detector that handles locks. The key insight is to leverage the execution graph of a task parallel program to determine if accesses can occur in parallel and design metadata that tracks a constant number of access histories for each lockset held before an access to a shared memory location. PTRacer uses static analysis and instrumentation to identify operations that can happen in the not-taken path in the presence of schedule sensitive branches and detects apparent races that can occur in other schedules for a given input. In summary, PTRacer is a data race detector for task parallel programs that (a) runs in parallel, (b) detects data races when the program uses locks, (c) maintains per-location metadata that is independent of the number of dynamic accesses, and (d) detects apparent races not only in the observed schedule but also in other schedules for a given input.

8. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feedback on the initial draft of this paper. This paper is based on work supported in part by NSF CAREER Award CCF–1453086, a sub-contract of NSF Award CNS–1116682, and a NSF Award CNS–1441724.
9. ARTIFACT DESCRIPTION

Our artifact is publicly available through GitHub at the following URL [https://github.com/rutgers-apl/PTRacer]. The artifact is structured as follows: (1) tdebug-lib contains the PTRacer dynamic data race detection library for Intel TBB programs. (2) PTRacer-solver contains the constraint generator written in python that constructs the first-order logic formula to check the feasibility of a schedule sensitive branch. (3) spd3-lib contains our implementation of the SPD3 dynamic data race detector for TBB programs. (4) tdebug-llvm contains the compiler pass in Clang+LLVM 3.7 that instruments the TBB program with calls to the data race detection library. (5) tbb-lib contains the modified Intel TBB library to enable data race detection, and (6) test_suite contains 120 unit tests, which includes racy and non-racy programs with and without locks and schedule sensitive branches.

The benchmark applications used for performance evaluation is available for download at [http://bit.ly/29i3OYL]. The entire artifact including the tools and the benchmark applications requires approximately 6 GB of storage space.

9.1 Setup

Run-time Environment. PTRacer has been developed and tested on a 4.00GHz four-core Intel x86-64 i7 processor, with 64 GB of memory running 64-bit Ubuntu 14.04.3. PTRacer works on C++ programs that use the Intel TBB library. PTRacer requires the C++ programs to be compiled with the Clang+LLVM compiler provided with the artifact.

Software Dependencies. Our artifact uses CMake to compile the Clang+LLVM sources. CMake can be downloaded from [https://cmake.org/download/]. To install CMake on Ubuntu use

$ sudo apt-get install cmake

PTRacer uses Z3 to check the satisfiability of the generated formula. Z3 is available on GitHub at the URL [https://github.com/Z3Prover/z3]. To install Z3, execute the following commands:

$ cd <Z3_base_directory>
$ python scripts/mk_make.py
$ cd build
$ make
$ export PYTHONPATH = </path_to_Z3_base_directory/build

Our artifact uses jgraph, a postscript graphing tool, to generate the performance graph. The jgraph tool is available as a package for installation on Ubuntu. To install jgraph on Ubuntu, execute the following command:

$ sudo apt-get install jgraph

To convert the postscript graph generated by jgraph to a pdf we use epstopdf. To install epstopdf on Ubuntu, execute the following command:

$ sudo apt-get install texlive-font-utils

Installation. We provide two bash scripts to automate the installation of PTRacer and SPD3: build_PTRacer.sh and build_SPD3.sh. We use < PT_ROOT > to refer to the base directory of our artifact.

To build PTRacer, run the build_PTRacer.sh shell script.

$ cd <PT_ROOT>
$ source build_PTRacer.sh

To build SPD3, run the build_SPD3.sh shell script.

$ cd <PT_ROOT>
$ source build_SPD3.sh

Note, the shell scripts have to be sourced at the command-line. The installation will fail if they are run as executables (i.e., with ./ command).

Download the benchmarks from [http://bit.ly/29i3OYL]. To unpack the benchmarks,

$ cd <PT_ROOT>
$ tar -xvf <path_to_benchmarks.tar.gz>

9.2 Usage

Test-suite. The unit tests can be compiled by running make in the test-suite directory. The unit tests are compiled using the Clang+LLVM compiler provided in the artifact, which instruments the unit tests with calls to the data race detection library. To execute each unit test use

$ ./<unit_test>

Alternatively, we provide a python script run_tests.py to execute all test programs and generate a test report. To run PTRacer on the unit tests use

$ python run_tests.py -d ptracer > report.txt

To run SPD3 use

$ python run_tests.py -d spd3 > report.txt

Note, to execute PTRacer on the unit tests, first run the build script for PTRacer and then run run_tests.py. Similarly, for SPD3, first run the build script for SPD3. This is necessary since the build scripts setup the appropriate paths to run the specific data race detector.

Benchmarks. We provide a python script that executes PTRacer and SPD3 on the benchmarks. Since the benchmark applications are long running we suggest using the nohup command to run the script. To run the benchmarks,

$ cd benchmarks
$ nohup python run_bmarks.py > report.txt &

Note, to execute PTRacer on the unit tests, first run the build script for PTRacer and then run run_bmarks.py. Similarly, for SPD3, first run the build script for SPD3.

9.3 Expected Results

Test-suite. The python script run_tests.py reports the number of unit tests that succeed or fail. A unit test succeeds if the data race detection tool reports all the data races that exist in the unit test and does not report any false positives. For all the unit tests that failed, the python script reports the cause of the failure, whether it was due to a missed data race or a false positive. All the unit tests are expected to succeed when executed with PTRacer. In contrast, SPD3 is expected to miss races and report false positives.

Benchmarks. The python script run_bmarks.py executes PTRacer and SPD3 on each benchmark application and generates a bar graph called Slowdown_graph.pdf. This graph shows the relative slowdown of executing the benchmark application with the data race detection tool over the baseline execution without instrumentation. The average slowdown of PTRacer over the benchmark suite on a x86-64 bit 4.00GHz machine with four cores and 64GB RAM (with simultaneous multithreading disabled) is expected to be 6.7x ± 1x. The mean slowdown of SPD3 is expected to be 5.4x.
10. REFERENCES


