
Apprenticeship Learning About Multiple Intentions

Monica Babeş-Vroman babes@cs.rutgers.edu

Vukosi Marivate vukosi@cs.rutgers.edu

Department of Computer Science, Rutgers University, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA

Kaushik Subramanian kausubbu@gatech.edu

College of Computing, Georgia Institute of Technology, 801 Atlantic Dr., Atlanta, GA 30332 USA

Michael Littman mlittman@cs.rutgers.edu

Department of Computer Science, Rutgers University, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA

Abstract

In this paper, we apply tools from inverse re-
inforcement learning (IRL) to the problem
of learning from (unlabeled) demonstration
trajectories of behavior generated by varying
“intentions” or objectives. We derive an EM
approach that clusters observed trajectories
by inferring the objectives for each cluster us-
ing any of several possible IRL methods, and
then uses the constructed clusters to quickly
identify the intent of a trajectory. We show
that a natural approach to IRL—a gradient
ascent method that modifies reward param-
eters to maximize the likelihood of the ob-
served trajectories—is successful at quickly
identifying unknown reward functions. We
demonstrate these ideas in the context of ap-
prenticeship learning by acquiring the prefer-
ences of a human driver in a simple highway
car simulator.

1. Introduction

Apprenticeship learning (Abbeel & Ng, 2004), or AL,
addresses the task of learning a policy from expert
demonstrations. In one well studied formulation, the
expert is assumed to be acting to maximize a reward
function, but the reward function is unknown to the
apprentice. The only information available concern-
ing the expert’s intent is a set of trajectories from the
expert’s interaction with the environment. From this
information, the apprentice strives to derive a policy

Appearing in Proceedings of the 28 th International Con-
ference on Machine Learning, Bellevue, WA, USA, 2011.
Copyright 2011 by the author(s)/owner(s).

that performs well with respect to this unknown re-
ward function. A basic assumption is that the expert’s
intent can be expressed as a reward function that is a
linear combination of a known set of features. If the
apprentice’s goal is also to learn an explicit represen-
tation of the expert’s reward function, the problem
is often called inverse reinforcement learning (IRL) or
inverse optimal control.

In many natural scenarios, the apprentice observes the
expert acting with different intents at different times.
For example, a driver might be trying to get to the
store safely one day or rushing to work for a meeting
on another. If trajectories are labeled by the expert to
identify their underlying objectives, the problem can
be decomposed into a set of separate IRL problems.
However, more often than not, the apprentice is left to
infer the expert’s intention for each trajectory.

In this paper, we formalize the problem of apprentice-
ship learning about multiple intentions. We adopt a
clustering approach in which observed trajectories are
grouped so their inferred reward functions are consis-
tent with observed behavior. We report results using
seven IRL/AL approaches including a simple but ef-
fective novel approach that chooses rewards to maxi-
mize the likelihoods of the observed trajectories under
a (near) optimal policy.

2. Background and Definitions

In this section, we define apprenticeship learning (AL)
and the closely related problem of inverse reinforce-
ment learning (IRL). Algorithms for these problems
take as input a Markov decision process (MDP) with-
out a reward function and the observed behavior of the
expert in the form of a sequence of state–action pairs.
This behavior is assumed to be (nearly) optimal in the

Apprenticeship Learning About Multiple Intentions

MDP with respect to an unknown reward function.
The goal in IRL is to find a proxy for the expert’s re-
ward function. The goal in AL is to find a policy that
performs well with respect to the expert’s reward func-
tion. As is common in earlier work, we focus on IRL
as a means to solving AL problems. IRL is finding ap-
plication in a broad range of problems from inferring
people’s moral values (Moore et al., 2009) to interpret-
ing verbal instructions (Branavan et al., 2009).

We use the following notation: MDP\r (or MDP) is a
tuple (S, A, T, γ), where S is the state space, A is the
action space, the transition function T : S ×A× S →
[0, 1] gives the transition probabilities between states
when actions are taken, and γ ∈ [0, 1) is a discount
factor that weights the outcome of future actions ver-
sus present actions. We will assume the availability of
a set of trajectories coming from expert agents taking
actions in the MDP in the form D = {ξ1, ..., ξN}. A
trajectory consists of a sequence of state-action pairs
ξi = {(s1, a1), . . .}.

Reward functions are parameterized by a vector of re-
ward weights θ applied to a feature vector for each
state-action pair φ(s, a). Thus, a reward function is
written rθ(s, a) = θT φ(s, a). If the expert’s reward
function is given by θE , the apprentice’s objective is
to behave in a way that maximizes the discounted sum
of expected future rewards with respect to rθE

. How-
ever, the apprentice does not know θE and must use
information from the observed trajectories to decide
how to behave. It can, for example, hypothesize its
own reward weights θA and behave accordingly.

IRL algorithms differ not just in their algorithmic ap-
proach but also in the objective function they seek
to optimize (Neu & Szepesvári, 2009). In this work,
we examined several existing algorithms for IRL/AL.
In Projection (Abbeel & Ng, 2004), the objective is
to make the features encountered by the appren-
tice’s policy match those of the expert. LPAL and
MWAL (Syed et al., 2008) behave in such a way that
they outperform the expert according to θA. Pol-
icy matching (Neu & Szepesvári, 2007) tries to make
the actions taken by its policy as close as possible to
those observed from the expert. Maximum Entropy
IRL (Ziebart et al., 2008) defines a probability distri-
bution over complete trajectories as a function of θA

and produces the θA that maximizes the likelihood of
the observed trajectories.

It is worth noting several approaches that we were
not able to include in our comparisons. Bayesian
IRL (Ramachandran & Amir, 2007) is a framework for
estimating posterior probabilities over possible reward
functions given the observed trajectories. It assumes

that randomness is introduced into each decision made
by the expert. In Active Learning (Lopes et al., 2009),
transitions are provided dynamically. The apprentice
queries the expert for additional examples in states
where needed.

We devised two new IRL algorithms for our compar-
isons. The linear program that constitutes the opti-
mization core of LPAL (Linear Programming Appren-
ticeship Learning) is a modified version of the standard
LP dual for solving MDPs (Puterman, 1994). It has
as its variables the “policy flow” and a minimum per-
feature reward component. We note that taking the
dual of this LP results in a modified version of the
standard LP primal for solving MDPs. It has as its
variables the value function and θA. Because it pro-
duces explicit reward weights instead of just behavior,
we call this algorithm Linear Programming Inverse Re-
inforcement Learning (LPIRL). Because its behavior is
defined indirectly by θA, it can produce slightly differ-
ent answers from LPAL. Our second algorithm seeks
to maximize the likelihood of the observed trajectories,
as described in the next section.

3. Maximum Likelihood Inverse
Reinforcement Learning (MLIRL)

We present a simple IRL algorithm we call Maximum
Likelihood Inverse Reinforcement Learning (MLIRL).
Like Bayesian IRL, it adopts a probability model that
uses θA to create a value function and then assumes
the expert randomizes at the level of individual action
choices. Like Maximum Entropy IRL, it seeks a max-
imum likelihood model. Like Policy matching, it uses
a gradient method to find optimal behavior. The re-
sulting algorithm is quite simple and natural, but we
have not seen it described explicitly.

To define the algorithm more formally, we start by
detailing the process by which a hypothesized θA in-
duces a probability distribution over action choices and
thereby assigns a likelihood to the trajectories in D.
First, θA provides the rewards from which discounted
expected values are derived:

QθA
(s, a) = θT

Aφ(s, a)+γ
∑

s′

T (s, a, s′)
⊗

a′

QθA
(s′, a′).

Here, the “max” in the standard Bellman equa-
tion is replaced with an operator that blends
values via Boltzmann exploration (John, 1994):⊗

a Q(s, a) =
∑

a Q(s, a)eβQ(s,a)/
∑

a′ eβQ(s,a′). This
approach makes the likelihood (infinitely) differen-
tiable, although, in practice, other mappings could be
used. In our work, we calculate these values via 100
iterations of value iteration and use β = 0.5.

Apprenticeship Learning About Multiple Intentions

Algorithm 1 Maximum Likelihood IRL

Input: MDP\r, features φ, trajectories
{ξ1, . . . , ξN}, trajectory weights {w1, . . . , wN},
number of iterations M , step size for each iteration
(t) αt, 1 ≤ t < M .
Initialize: Choose random set of reward weights
θ1.
for t = 1 to M do

Compute Qθt
, πθt

.

L =
∑

i

wi

∑

(s,a)∈ξ

log(πθt
(s, a)).

θt+1 ← θt + αt∇L.
end for

Output: Return θA = θM .

Figure 1. A single trajec-
tory from start to goal.

1 2 3 4 5

1

2

3

4

5 −10

−5

0

5

10

15

Figure 2. Reward function
computed using MLIRL.

The Boltzmann exploration policy is πθA
(s, a) =

eβQθA
(s,a)/

∑
a′ eβQθA

(s,a′). Under this policy, the log
likelihood of the trajectories in D is L(D|θ) =

log

N∏

i=1

∏

(s,a)∈ξi

πθ(s, a)wi =

N∑

i=1

∑

(s,a)∈ξi

wi log πθ(s, a).

(1)
Here, wi is a trajectory-specific weight encoding the
frequency of trajectory i. MLIRL seeks θA =
argmaxθ L(D|θ)—the maximum likelihood solution.
In our work, we optimized this function via gradient
ascent (although we experimented with several other
optimization approaches). These pieces come together
in Algorithm 1.

It is open whether infinite-horizon value iteration with
the Boltzmann operator will converge. In our finite-
horizon setting, it is well-behaved and produces a well-
defined answer, as illustrated later in this section and
in our experiments (Section 5).

We illustrate the functioning of the MLIRL algorithm
using the example shown in Figure 1. It depicts a
5 × 5 grid with puddles (indicated by wavy lines), a
start state (S) and an absorbing goal state (G). The
dashed line shows the path taken by an expert from S

to G. The algorithm is now faced with the task of infer-
ring the parameters of the expert’s reward function θE

using this trajectory. It appears that the expert is try-
ing to reach the goal by taking the shortest path and
at the same time avoid any intermediate puddles. The
assignment of reward weights to the three features—
ground, puddle, and goal—that makes this trajectory
maximally likely is one that assigns the highest re-
ward to the goal. (Otherwise, the expert would have
preferred to travel somewhere else in the grid.) The
probability of the observed path is further enhanced
by assigning lower reward weights to puddles than to
ground. Thus, although one explanation for the path
is that it is one of a large number of possible shortest
paths to the goal, the trajectory’s probability is max-
imized by assuming the expert intentionally missed
the puddles. The MLIRL-computed reward function
is shown in Figure 2, which assigns high likelihood
(0.1662) to the single demonstration trajectory.

One of the challenges of IRL is that, given an expert
policy, there are an infinite number of reward functions
for which that policy is optimal in the given MDP.
Like several other IRL approaches, MLIRL addresses
this issue by searching for a solution that not only
explains why the observed behavior is optimal, but
also by explaining why the other possible behaviors
are suboptimal. In particular, by striving to assign
high probability to the observed behavior, it implicitly
assigns low probability to unobserved behavior.

4. Apprenticeship Learning about
Multiple Intentions

The motivation for our work comes from settings like
surveillance, in which observed actors are classified as
“normal” or “threatening” depending on their behav-
ior. We contend that a parsimonious classifier results
by adopting a generative model of behavior—assume
actors select actions that reflect their intentions and
then categorize them based on their inferred inten-
tions. For example, the behavior of people in a train
station might differ according to their individual goals:
some have the goal of traveling causing them to buy
tickets and then go to their trains, while others may be
picking up passengers causing them to wait in a visi-
ble area. We adopt the approach of using unsupervised
clustering to identify the space of common intentions
from a collection of examples, then mapping later ex-
amples to this set using Bayes rule.

Similar scenarios include decision making by auto-
matic doors that infer when people intend to go
through them, a home climate control system that
sets temperature controls appropriately by reasoning

Apprenticeship Learning About Multiple Intentions

about the home owner’s likely destinations when driv-
ing. A common theme in these applications is that
unlabeled data—observations of experts with varying
intentions—are much easier to come by than trajecto-
ries labeled with their underlying goal. We define our
formal problem accordingly.

In the problem of apprenticeship learning about mul-
tiple intentions, we assume there exists a finite set
of K or fewer intentions each represented by reward
weights θk. The apprentice is provided with a set of
N > K trajectories D = {ξ1, ..., ξN}. Each intention
is represented by at least one element in this set and
each trajectory is generated by an expert with one
of the intentions. An additional trajectory ξE is the
test trajectory—the apprentice’s objective is to pro-
duce behavior πA that obtains high reward with re-
spect to θE , the reward weights that generated ξE .
Many possible clustering algorithms could be applied
to attack this problem. We show that Expectation-
Maximization (EM) is a viable approach.

4.1. A Clustering Algorithm for Intentions

We adopt EM (Dempster et al., 1977) as a straight-
forward approach to computing a maximum likelihood
model in a probabilistic setting in the face of missing
data. The missing data in this case are the cluster
labels—the mapping from trajectories to one of the
intentions. We next derive an EM algorithm.

Define zij to be the probability that trajectory i be-
longs in cluster j. Let θj be the estimate of the
reward weights for cluster j, and ρj to be the es-
timate for the prior probability of cluster j. Fol-
lowing the development in Bilmes (1997), we define
Θ = (ρ1, . . . , ρK , θ1, . . . , θK) as the parameter vector
we are searching for and Θt as the parameter vector
at iteration t. Let yi = j if trajectory i came from
following intention j and y = (y1, . . . , yN). We write
zt

ij = Pr(ξi|θ
t
j), the probability, according to the pa-

rameters at iteration t, that trajectory i was generated
by intention j.

The E step of EM simply computes

zt
ij =

∏

(s,a)∈ξi

πθt
j
(s, a)ρt

j/Z, (2)

where Z is the normalization factor.

To carry out the M step, we define the EM Q function
(distinct from the MDP Q function):

Q(Θ, Θt)

=
∑

y

L(Θ|D, y)) Pr(y|D, Θt)

Algorithm 2 EM Trajectory Clustering

Input: Trajectories {ξ1, ..., ξN} (with varying in-
tentions), number of clusters K.
Initialize: ρ1, . . . , ρK , θ1, . . . , θK randomly.
repeat

E Step: Compute zij =
∏

(s,a)∈ξi
πθj

(s, a)ρj/Z,
where Z is the normalization factor.
M step: For all l, ρl =

∑
i zil/N . Compute θl via

MLIRL on D with weight zij on trajectory ξi.
until target number of iterations completed.

=
∑

y

N∑

i=1

log(ρyi
Pr(ξi|θyi

))

N∏

i′=1

Pr(yi′ |ξi′ , Θ
t)

=
∑

y1

· · ·
∑

yN

N∑

i=1

K∑

l=1

δl=yi
log(ρl Pr(ξi|θl))

×

N∏

i′=1

Pr(yi′ |ξi′ , Θ
t)

=

K∑

l=1

N∑

i=1

log(ρl Pr(ξi|θl))
∑

y1

· · ·
∑

yN

δl=yi

×

N∏

i′=1

Pr(yi′ |ξi′ , Θ
t)

=

K∑

l=1

N∑

i=1

log(ρl Pr(ξi|θl))z
t
il

=
K∑

l=1

N∑

i=1

log(ρl)z
t
il +

K∑

l=1

N∑

i=1

log(Pr(ξi|θl))z
t
il.

In the M step, we need to pick Θ (ρl and θl)
to maximize Equation 3. Since they are not
interdependent, we can optimize them separately.
Thus, we can set ρt+1

l =
∑

i zt
il/N and θt+1

l =

argmaxθ

∑N
i=1 zt

il log(Pr(ξi|θl)). The key observation
is that this second quantity is precisely the IRL log
likelihood, as seen in Equation 1. That is, the M
step demands that we find reward weights that make
the observed data as likely as possible, which is pre-
cisely what MLIRL seeks to do. As a result, EM
for learning about multiple intentions alternates be-
tween calculating probabilities via the E step (Equa-
tion 2) and performing IRL on the current clusters.
Algorithm 2 pulls these pieces together. This EM
approach is a fairly direct interpretation of the clus-
tering problem we defined. It differs from much of
the published work on learning from multiple ex-
perts, however, which starts with the assumption that
all the experts have the same intentions (same re-
ward function), but perhaps differ in their reliabil-

Apprenticeship Learning About Multiple Intentions

ity (Argall et al. 2009, Richardson & Domingos 2003).

4.2. Using Clusters for AL

The input of the EM method of the previous section
is a set of trajectories D and a number of clusters K.
The output is a set of K clusters. Associated with
each cluster i are the reward weights θi, which induce
a reward function rθi

, and a cluster prior ρi. Next,
we consider how to carry out AL on a new trajectory
ξE under the assumption that it comes from the same
population as the trajectories in D.

By Bayes rule, Pr(θi|ξE) = Pr(ξE |θi) Pr(θi)/ Pr(ξE).
Here, Pr(θi) = ρi and Pr(ξE |θi) is easily computable
(z in Section 4.1). The quantity Pr(ξ) is a simple nor-
malization factor. Thus, the apprentice can derive a
probability distribution over reward functions given a
trajectory (Ziebart et al., 2008). How should it be-
have? Let fπ(s, a) be the (weighted) fraction of the
time policy π spends taking action a in state s. Then,
with respect to reward function r, the value of policy π
can be written

∑
s,a fπ(s, a)r(s, a). We should choose

the policy with the highest expected reward:

argmax
π

∑

i

Pr(θi|ξE)
∑

s,a

fπ(s, a)rθi
(s, a)

= argmax
π

∑

s,a

fπ(s, a)
∑

i

Pr(θi|ξE)rθi
(s, a)

= argmax
π

∑

s,a

fπ(s, a)r′(s, a),

where r′(s, a) =
∑

i Pr(θi|ξE)rθi
(s, a). That is, the

optimal policy for the apprentice is the one that maxi-
mizes the sum of the reward functions for the possible
intentions, weighted by their likelihoods. This prob-
lem can be solved by computing the optimal policy of
the MDP with this averaged reward function. Thus,
to figure out how to act given an initial trajectory and
collection of example trajectories, our approach is to
cluster the examples, use Bayes rule to figure out the
probability that the current trajectory belongs in each
cluster, create a merged reward function by combining
the cluster reward functions using the derived proba-
bilities, and finally compute a policy for the merged
reward function to decide how to behave.

5. Experiments

Our experiments were designed to compare the per-
formance of the MLIRL (Section 3) and LPIRL (Sec-
tion 2) algorithms with five existing IRL/AL ap-
proaches summarized in Section 2. We compare these
seven approaches in several ways to assess (a) how well
they perform apprenticeship learning and (b) how well

they function in the setting of learning about multiple
intentions. We first look at their performance in a grid
world with a single expert (single intention), a domain
where a few existing approaches (Abbeel & Ng 2004,
Syed et al. 2008) have already been tested. Our sec-
ond experiment, in a grid world with puddles, demon-
strates the MLIRL algorithm as part of our EM ap-
proach (Section 4) to cluster trajectories from mul-
tiple intentions—each corresponding to a different
reward function. Thirdly, we compare the perfor-
mance of all the IRL/AL algorithms as part of the
EM clustering approach in the simulated Highway
Car domain (Abbeel & Ng 2004, Syed et al. 2008), an
infinite-horizon domain with stochastic transitions.

Our experiments used implementations of the MLIRL,
LPIRL, Maximum Entropy IRL, LPAL, MWAL, Pro-
jection, and Policy Matching algorithms. We obtained
implementations from the original authors wherever
possible.

5.1. Learning from a Single Expert

0 50 100 150

4

4.5

5

5.5

6

Sample Trajectories

A
ve

ra
ge

 V
al

ue

Optimal
MLIRL
LPAL
LPIRL
Policy Matching
Projection
Maximum Entropy
MWAL

Figure 3. A plot of the average reward computed with in-
creasing number of sample trajectories.

0 50 100 150

−40

−35

−30

−25

−20

−15

−10

−5

0

Sample Trajectories

A
ve

ra
ge

 L
ik

el
ih

oo
d

(lo
g

sc
al

e)

MLIRL
LPAL
Policy Matching
LPIRL
Projection
MWAL
Maximum Entropy

Figure 4. A plot of the average trajectory likelihood com-
puted with increasing number of sample trajectories.

In this experiment, we tested the performance of
each IRL/AL algorithm in a grid world environ-

Apprenticeship Learning About Multiple Intentions

ment similar to one used by Abbeel & Ng (2004) and
Syed et al. (2008). We use a grid of size 16×16. Move-
ment of the agent is possible in the four compass direc-
tions with each action having a 30% chance of causing
a random transition. The grid is further subdivided
into non-overlapping square regions, each of size 4×4.
Using the same terminology as Abbeel & Ng (2004),
we refer to the square regions as “macrocells”. The
partitioning of the grid results in a total of 16 macro-
cells. Every cell in the gridworld is characterized by a
16-dimensional feature vector φ indicating, using a 0
or 1, which macrocell it belongs to. A random weight
vector is chosen such that the true reward function just
encodes that some macrocells are more desirable than
others. The optimal policy π∗ is computed for the
true reward function and the single expert trajectories
are acquired by sampling π∗. To maintain consistency
across the algorithms, the start state is drawn from a
fixed distribution and the lengths of the trajectories
are truncated to 60 steps.

Of particular interest is the ability of the seven
IRL/AL algorithms to learn from a small amount of
data. Thus, we illustrate the performance of the algo-
rithms by varying the number of sample trajectories
available for learning. Results are averaged over 5 rep-
etitions and standard error bars are given. Note that in
this and the following experiments, we use Boltzmann
exploration polices to transform the reward functions
computed by the IRL algorithms into policies when
required.

Figure 3 shows the average reward accumulated by
the policy computed by each algorithm as more tra-
jectories are available for training. With 30 or more
trajectories, MLIRL outperforms the other six. LPAL
and LPIRL also perform well. An advantage of LPIRL
over LPAL is that it returns a reward function, which
makes it able to generalize over states that the ex-
pert has not visited during the demonstration trajec-
tories. However, we observed that designing a policy
indirectly through the reward function was less stable
than optimizing the policy directly. It is interesting to
note that MaxEnt lags behind in this setting. MaxEnt
appears best suited for settings with very long demon-
stration trajectories, as opposed to the relatively short
trajectories we used in this experiment.

Figure 4 shows that for the most part, in this dataset,
the better an algorithm does at assigning high proba-
bility to the observed trajectories, the more likely it is
to obtain higher rewards.

5.2. Learning about Multiple Intentions—Grid

World with Puddles

In our second experiment, we test the ability of our
proposed EM approach, described in Section 4, to ac-
curately cluster trajectories associated with multiple
intentions.

We make use of a 5 × 5 discrete grid world shown in
Figure 5 (Left). The world contains a start state, a
goal state and patches in the middle indicating pud-
dles. Furthermore, the world is characterized by three
feature vectors, one for the goal, one for the puddles
and another for the remaining states. For added ex-
pressive power, we also included the negations of the
features in the set thereby doubling the number of fea-
tures to six.

We imagine data comes from two experts with differ-
ent intentions. Expert 1 goes to the goal avoiding the
puddles at all times and Expert 2 goes to the goal
completely ignoring the puddles. Sample trajectories
from these experts are shown in Figure 5 (Left). Tra-
jectory T1 was generated by Expert 1, T2 and T3, by
Expert 2. This experiment used a total of N = 12 sam-
ple trajectories of varying lengths, 5 from Expert 1, 7
from Expert 2. We initiated the EM algorithm by set-
ting the value of K, the number of clusters, to 5 to
allow some flexibility in clustering. We ran the clus-
tering, then hand-identified the two experts. Figure 5
(Right) shows the algorithm’s estimates that the three
trajectories, T1, T2 and T3, belong to Expert 1. The
EM approach was able to successfully cluster all of
the 12 trajectories in the manner described above: the
unambiguous trajectories were accurately assigned to
their clusters and the ambiguous ones were “properly”
assigned to multiple clusters. Since we set the value
of K = 5, EM produced 5 clusters. On analyzing
these clusters, we found that the algorithm produced
2 unique policies along with 3 copies. Thus, EM cor-
rectly extracted the preferences of the experts using
the input sample trajectories.

Figure 5. Left: Grid world showing the start states (grey),
goal state (G), puddles and three sample trajectories.
Right: Posterior probabilities of the three trajectories be-
longing to Expert 1.

Apprenticeship Learning About Multiple Intentions

0 20 40 60 80 100 120

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Driving Time in Seconds

A
ve

ra
ge

 R
ew

ar
d

MLIRL
Maximum Entropy
LPAL
Policy Matching
MWAL
Projection
LPIRL

Figure 6. Average reward for Student trajectory for EM
approach with varying IRL/AL components.

The probability values were computed at intermediate
steps during the 10 iterations of the EM algorithm.
After the 1st iteration, EM estimated that T1 belongs
to Expert 1 with high probability and T2 belongs to
Expert 1 with very low probability (implying that it
therefore belongs to Expert 2). It is interesting to note
here that EM estimated that trajectory T3 belongs to
Expert 1 with probability 0.3. The uncertainty in-
dicates that T3 could belong to either Expert 1 or
Expert 2.

5.3. Learning about Multiple

Intentions—Highway Car Domain

In our third experiment, we instantiated the EM al-
gorithm in an infinite horizon domain with stochas-
tic transitions, the simulated Highway Car do-
main (Abbeel & Ng 2004, Syed et al. 2008). This do-
main consists of a three-lane highway with an extra off-
road lane on either side, a car driving at constant speed
and a set of oncoming cars. Figure 7 shows a snapshot
of the simulated highway car domain. The task is for
the car to navigate through the busy highway using
three actions: left, right and stay. The domain consists
of three features: speed, number of collisions, number
of off-road visits. Our experiment uses these three fea-
tures along with their negations, making a total of six
features. The transition dynamics are stochastic. Four
different experts were used for this experiment: Safe:
Avoids collisions and avoids going off-road. Student:
Avoid collisions and does not mind going off-road. De-

molition: Collides with every car and avoids going
off-road. Nasty: Collides with every car and does
not mind going off-road. Sample trajectories were col-
lected from between ten seconds and two minutes of
driving time from a human subject emulating each of
the four experts. Using these sample trajectories, the
EM approach performed clustering (K = 6) for 10 it-

Figure 7. Simulated Highway Car.

0 20 40 60 80 100 120
0.5

1

1.5

2

2.5

3

3.5

4

Driving Time in seconds

A
ve

ra
ge

 V
al

ue

EM + MLIRL

EM + Maximum Entropy

Online AL

Single Expert AL

Figure 8. Value of the computed policy as a function
of length of driving trajectories for three approaches to
learning about multiple intentions.

erations. The trajectory used for evaluation ξE was
generated by Student. The actions selected by the
approach outlined in the previous section were evalu-
ated according to the reward function from Student

and plotted in Figure 6. Although our MLIRL algo-
rithm is best suited to carry out the M step in the
EM algorithm, any IRL can be used to approximately
optimize the likelihood. Indeed, even AL algorithms
can be used in the EM framework where a probabilis-
tic policy takes the place of the reward weights as the
hidden parameters. Thus, we instantiated each of the
7 AL/IRL approaches within the EM algorithm. It
is interesting to note that maximum likelihood algo-
rithms (MLIRL and MaxEnt) are the most effective
for this taks. This time, MaxEnt was provided with
longer trajectories, leading to an improvement in its
performance compared to Section 5.1 and Figure 3.

Other approaches to learning about multiple inten-
tions are possible. We compared the EM approach
to AL (Section 4.2) with two other possibilities: (1)
an AL learner that ignores all previous data in D
and only learns from the current trajectory ξE (on-
line AL), and (2) all the prior data D and current
trajectory ξE are treated as a single input to the AL
learner , commingling data generated from different

Apprenticeship Learning About Multiple Intentions

intentions (single expert AL). Figure 8 shows that the
EM approach (with either MLIRL or Maximum En-
tropy) makes much better use of the available data
and mixing data from multiple experts is undesirable.

6. Conclusion and Future Work

We defined an extension of inverse reinforcement learn-
ing and apprenticeship learning in which the learner is
provided with unlabeled example trajectories gener-
ated from a number of possible reward functions. Us-
ing these examples as a kind of background knowledge,
a learner can more quickly infer and optimize reward
functions for novel trajectories.

Having shown that an EM clustering approach can suc-
cessfully infer individual intentions from a collection of
unlabeled trajectories, we next intend to pursue using
these learned intentions to predict the behavior of and
better interact with other agents in multiagent envi-
ronments.

References

Abbeel, Pieter and Ng, Andrew Y. Apprenticeship
learning via inverse reinforcement learning. In Pro-
ceedings of the International Conference on Machine
Learning, 2004.

Argall, Brenna, Browning, Brett, and Veloso,
Manuela M. Automatic weight learning for multi-
ple data sources when learning from demonstration.
In Proceedings of the International Conference on
Robotics and Automation, pp. 226–231, 2009.

Bilmes, Jeff A. A gentle tutorial of the EM algorithm
and its application to parameter estimation for gaus-
sian mixture and hidden Markov models. Technical
Report TR-97-021, International Computer Science
Institute, 1997.

Branavan, S. R. K., Chen, Harr, Zettlemoyer, Luke S.,
and Barzilay, Regina. Reinforcement learning for
mapping instructions to actions. In Proceedings of
the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP, pp.
82–90, 2009.

Dempster, A. P., Laird, N. M., and Rubin, D. B. Max-
imum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society,
39(1):1–38, 1977.

John, George H. When the best move isn’t opti-
mal: Q-learning with exploration. In Proceedings

of the Twelfth National Conference on Artificial In-
telligence, pp. 1464, Seattle, WA, 1994.

Lopes, Manuel, Melo, Francisco S., and Montesano,
Luis. Active learning for reward estimation in in-
verse reinforcement learning. In ECML/PKDD, pp.
31–46, 2009.

Moore, Adam B., Todd, Michael T., and Conway,
Andrew R. A. A computational model of moral
judgment. Poster at Psychonomics Society Meeting,
2009.

Neu, Gergely and Szepesvári, Csaba. Apprenticeship
learning using inverse reinforcement learning and
gradient methods. In Proceedings of the Conference
of Uncertainty in Artificial Intelligence, 2007.

Neu, Gergely and Szepesvári, Csaba. Training parsers
by inverse reinforcement learning. Machine Learn-
ing, 77(2–3):303–337, 2009.

Puterman, Martin L. Markov Decision Processes—
Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., New York, NY, 1994.

Ramachandran, Deepak and Amir, Eyal. Bayesian in-
verse reinforcement learning. In Proceedings of IJ-
CAI, pp. 2586–2591, 2007.

Richardson, Matthew and Domingos, Pedro. Learn-
ing with knowledge from multiple experts. In Pro-
ceedings of the International Conference on Machine
Learning, pp. 624–631, 2003.

Syed, Umar, Bowling, Michael, and Schapire,
Robert E. Apprenticeship learning using linear pro-
gramming. In Proceedings of the International Con-
ference on Machine Learning, pp. 1032–1039, 2008.

Ziebart, Brian D., Maas, Andrew, Bagnell, J. Andrew,
and Dey, Anind K. Maximum entropy inverse re-
inforcement learning. In Proceedings of the 23rd
National Conference on Artificial Intelligence, pp.
1433–1438, 2008.

