Due by the beginning of class, Oct. 1.

1. Define a subtree of be any connected subgraph of a tree (this is different than the definition in the book).
 (a) Prove that the number of subtrees of a complete binary tree is not polynomial in the number of nodes.
 (b) Give an example of a class of trees \(\{T_n\} \) where the number of subtrees is a polynomial in the number of nodes.

2. Show that if you have a polynomial time algorithm for Hamiltonian Path, that you have a polynomial time algorithm for sorting.

3. The **Bounded Degree Spanning Tree** (BDST) problem is the following:
 Input: Graph \(G \) and integer \(k \).
 Output: Yes, if \(G \) has a spanning tree where every node has degree at most \(k \), No, otherwise.
 Suppose there is no polynomial time algorithm for Hamiltonian Path. Show that there is no polynomial time algorithm for BDST.

4. Let \(T = (V, E) \) be an edge weighted tree such that \(e \in E \) has minimal weight.
 Let \(T_1 \) and \(T_2 \) be the trees derived from \(T \) by removing \(e \). Then we define a **cartesian tree** of \(T \) to be a binary tree such that \(e \) is the root, and the left and right children of \(e \) are the cartesian trees of \(T_1 \) and \(T_2 \), respectively. If either \(T_1 \) or \(T_2 \) are singleton nodes, then their cartesian trees are empty.
 Give an algorithm for finding a cartesian tree of a tree. Give an analysis of its running time. The faster the algorithm, the better your grade. (Hint: Read about the \(O(n \log n) \) algorithm for Union-Find in the book or online.)

5. Give a lower bound of \(\Omega(n \log n) \) for constructing the cartesian tree of a tree.