1 Middle binomial coefficients

For any integer \(n \geq 0 \), the number of binomial coefficients of the form \(\binom{n}{k} \) is \(n+1 \): \(\binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n-1}, \binom{n}{n} \). When \(n \) is even, the “middle” binomial coefficient is \(\binom{n}{n/2} \). In this case, the middle binomial coefficient has exactly \(\frac{n}{2} \) binomial coefficients before it, i.e. \(\binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n/2-1} \), and exactly \(\frac{n}{2} \) binomial coefficients after it, i.e. \(\binom{n}{n/2+1}, \ldots, \binom{n}{n} \).

When \(n \) is odd, the story is a little different, there will be two binomial coefficients in the middle: \(\binom{n}{n/2} \) and \(\binom{n}{n/2+1} \), and they will have exactly \(\frac{n-1}{2} \) binomial coefficients before them, i.e. \(\binom{n}{0}, \ldots, \binom{n}{n/2-1} \), and will have exactly \(\frac{n-1}{2} \) binomial coefficients after them, i.e. \(\binom{n}{n/2+2}, \ldots, \binom{n}{n} \).

2 The behavior of binomial coefficients as \(k \) varies

We will now try to understand how \(\binom{n}{k} \) changes as we vary \(k \) from 0 to \(n \). Let us define the function \(\text{Binom}_n : \{0, \ldots, n\} \to \mathbb{N} \) as \(\text{Binom}_n(k) = \binom{n}{k} \).

If we use the formula

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!},
\]

we can plot the function \(\text{Binom}_5 \) as the value of \(k \) varies from 0 to 5:

You can see from the above plot that the two middle coefficients \((k = 2 \text{ and } k = 3) \) are the largest in value, and that the value of \(\binom{5}{k} \) increases as \(k \) varies from 0 to 2, then doesn’t change when we
move from 2 to 3, and then drops as we move from 3 to 5. It should not be surprising that the plot has some nice symmetry to it. In particular, we can see that \(\binom{5}{0} = \binom{5}{5}, \binom{5}{1} = \binom{5}{4}, \) and \(\binom{5}{2} = \binom{5}{3}. \) We have seen this before; we know that for all \(n \) and \(k \)

\[
\binom{n}{k} = \binom{n}{n-k}.
\]

Thus, because of this property, it will always be the case that the plot of \(\text{Binom}_n(k) \) will be symmetric about the middle binomial coefficient(s) (i.e., about the \(k = \frac{n}{2} \) vertical line in the plot).

We will now plot \(\text{Binom}_{10} \):

![Binomial Coefficient Graph](image.png)

Note that since \(n = 10 \) is even, we have only one middle binomial coefficient \((k = 5) \) instead of two (as in the odd case of \(n = 5 \)), and it is also the largest in value. The behavior is similar to the case of \(n = 5 \): as \(k \) goes from 0 to \(\frac{n}{2}, \) \(\binom{n}{k} \) increases, but then it drops as we go from \(\frac{n}{2} \) to \(n. \) Again, one can observe the symmetry of the binomial coefficients about \(k = \frac{n}{2}. \)

We will now move on to formally proving some facts about the behavior of binomial coefficients \(\binom{n}{k} \) as \(k \) increases. We will first consider the case of odd \(n. \)

Theorem 1. Let \(n \) be an odd positive integer. Then if \(0 \leq k < \frac{n-1}{2}, \)

\[
\binom{n}{k+1} > \binom{n}{k},
\]

if \(k = \frac{n-1}{2} \) then \(\binom{n}{k+1} = \binom{n}{k}, \) and when \(\frac{n-1}{2} < k < n, \)

\[
\binom{n}{k+1} < \binom{n}{k}.
\]

Proof. For \(0 \leq k \leq n-1, \) define \(r_k \) as follows:

\[
r_k = \frac{\binom{n}{k+1}}{\binom{n}{k}},
\]

i.e., the ratio of the \((k+1)^{th} \) binomial coefficient to the \(k^{th} \) binomial coefficient. We can simplify \(r_k \) as

\[
r_k = \frac{n}{k+1} \frac{k!(n-k)!}{(n-k)(n-k-1)!} = \frac{n - k}{k + 1}.
\]
(Can you explain why the last equality in the above series of equalities is true?) Note that whenever \(r_k > 1 \), then the \((k+1)\text{th}\) binomial coefficient is larger than the \(k\text{th}\) one, and it’s the other way around when \(r_k < 1 \), so we just need to understand the behavior of \(r_k \) with \(k \):

\[
r_k = \frac{n-k}{k+1} < 1 \iff k > \frac{n-1}{2},
\]

and

\[
r_k = \frac{n-k}{k+1} > 1 \iff k < \frac{n-1}{2}.
\]

Also, it’s easy to see that the \((k+1)\text{th}\) and \(k\text{th}\) binomial coefficients are equal when \(r_k = 1 \) which can only happen when \(k = \frac{n-1}{2} \). This completes the proof.

To recap, as a function of \(k \), \(\binom{n}{k} \) keeps increasing strictly till \(k = \frac{n-1}{2} \). After that, the value of \(\binom{n}{k} \) remains unchanged as we move from \(k = \frac{n-1}{2} \) to \(k = \frac{n+1}{2} \), and so these are the largest binomial coefficients. Finally, as \(k \) goes beyond \(\frac{n+1}{2} \), \(\binom{n}{k} \) strictly decreases.

The even \(n \) case is virtually identical except for the fact that there is only one largest binomial coefficient, i.e. \(\binom{n}{\frac{n}{2}} \) (that is there is only one “maxima”). Since the statement and proof of the version of Theorem 1 for even \(n \) is virtually identical to that of the odd \(n \) case, we will omit it here (although you should try writing down the statement on your own to be sure you understand it).

3 Symmetry of binomial coefficients

We already discussed that the fact that binomial coefficients are “symmetric” about the middle. One way of stating this mathematically is

\[
\binom{n}{k} = \binom{n}{n-k}.
\]

We can rewrite the above statement so that it more accurately reflects the symmetry about the middle:

Theorem 2. If \(n \) is an even positive integer, then for all integers \(1 \leq k \leq \frac{n}{2} \),

\[
\text{Binom}_n \left(\frac{n}{2} - k \right) = \text{Binom}_n \left(\frac{n}{2} + k \right),
\]

that is

\[
\binom{n/2}{k} = \binom{n/2}{n/2+k}.
\]

When \(n \) is an odd positive integer, then for all integers \(1 \leq k \leq \frac{n-1}{2} \),

\[
\text{Binom}_n \left(\frac{n-1}{2} - k \right) = \text{Binom}_n \left(\frac{n+1}{2} + k \right),
\]

that is

\[
\binom{n-1/2}{k} = \binom{n+1/2}{n/2+k}.
\]
Proof. For the even case, let $1 \leq k \leq \frac{n}{2}$, and let $k' = \frac{n}{2} - k$. Then
\[
\binom{n}{\frac{n}{2} - k} = \binom{n}{k'} = \binom{n}{n - k'} = \binom{n}{n - (\frac{n}{2} - k)} = \binom{n}{\frac{n}{2} + k},
\]
where the second equality follows from the fact we stated above (before the statement of theorem): $\binom{n}{k} = \binom{n}{n - k}$.

The proof for the odd case is similar. \qed

We will now state one final property of binomial coefficients: when n is odd, the sum of the first half of binomial coefficients is equal to the sum of the second half of binomial coefficients.

Theorem 3. Let n be an odd positive integer. Then
\[
\sum_{k=0}^{\frac{n-1}{2}} \binom{n}{k} = \sum_{k=\frac{n+1}{2}}^{n} \binom{n}{k}.
\]

Proof. Using the fact that $\binom{n}{k} = \binom{n}{n-k}$, we can rewrite the LHS as
\[
\sum_{k=0}^{\frac{n-1}{2}} \binom{n}{n-k}.
\]

Let $k' = n - k$. Then, in the above sum, as k increases from 0 to $\frac{k-1}{2}$, k' will decreases from n to $\frac{n+1}{2}$. Thus,
\[
\sum_{k=0}^{\frac{n-1}{2}} \binom{n}{k} = \binom{n}{n} + \binom{n}{n-1} + \cdots + \binom{n}{\frac{n+1}{2} + 1} + \binom{n}{\frac{n+1}{2}} = \sum_{k=\frac{n+1}{2}}^{n} \binom{n}{k}.
\]

This completes the proof. \qed

For even n, there are an odd number of binomial coefficients in total (since there are $n+1$ of them in total), and so the notion of “first half of binomial coefficients” is not well-defined (which half is $\binom{n}{\frac{n}{2}}$ included in: the first or the second?), and so we have to slightly tweak the statement. This will be explored in your problem set for this week.