Problem 1

Recall that during lecture we proved that
\[\sum_{k \leq n \text{ and } k \text{ is even}} \binom{n}{k} = \sum_{k \leq n \text{ and } k \text{ is odd}} \binom{n}{k} = 2^{n-1}, \]
which can be interpreted to mean that the number of odd size subsets of \{1, \ldots, n\} is the same as the number of even size subsets of \{1, \ldots, n\}, and both are equal to 2^{n-1}. In this problem, we will give a combinatorial proof of this statement. By this we mean that we will use the bijection method to show that the number of even size subsets of \{1, \ldots, n\} is the same as the number of odd size subsets of \{1, \ldots, n\}, and then use that to conclude the above equation. We will then use the conclusion to say something about binary strings with an odd/even number of ones in them.

1. Let \(S_{\text{odd}} \) and \(S_{\text{even}} \) denote the set of odd and the set of even size subsets of \{1, \ldots, n\}, respectively. Let us define the following transformation that takes as input a subset \(S \) of \{1, \ldots, n\} and maps/transforms it into the set \(S \oplus \{1\} \). Argue that this transformation can be used to define a function \(f : S_{\text{odd}} \rightarrow S_{\text{even}} \) that, given an odd size subset from the domain as input, maps it to an even size subset in the codomain.

2. Argue that \(f \) as defined in the previous part is a bijection.

3. Use the previous part to conclude that
\[\sum_{k \leq n \text{ and } k \text{ is even}} \binom{n}{k} = \sum_{k \leq n \text{ and } k \text{ is odd}} \binom{n}{k}. \]

Hint: Bijection method.

4. Finally, use the previous part, along with Theorem 3 from the notes for lecture 8 to conclude that
\[\sum_{k \leq n \text{ and } k \text{ is even}} \binom{n}{k} = \sum_{k \leq n \text{ and } k \text{ is odd}} \binom{n}{k} = 2^{n-1}. \]

Hint: If \(x + y = A \) and \(x = y \) then \(x = y = \frac{A}{2} \).

5. Argue that the number of binary strings of length \(n \) with an odd number of ones in them is \(2^{n-1} \). Similarly, argue that the number of binary strings of length \(n \) with an even number of ones in them is also \(2^{n-1} \).

Problem 2

Do Problem 15.28 from the textbook.

Hint: Use the binomial theorem.

For part (b), let \(X = 3x \) and \(Y = 2y \). Then \((3x + 2y)^n = (X + Y)^n \). Use the binomial theorem to “expand” \((X + Y)^n \). Put back \(X = 3x \) and \(Y = 2y \) in the expansion, simplify, and then infer the coefficient of \(x^8y^9 \).

For part (c), use a similar strategy as part (b). Then it is not hard to see that the only monomials that appear are of the form \((a^2)^k(b^3)^{5-k} \) where \(0 \leq k \leq 5 \). Use this information to find the coefficient of \(a^6b^6 \).