Quiz III (Solutions) (CS 206 - Spring 2020)

[2 problems, 20 pts, 20 minutes]

Name:
NetID:

This is an open notes quiz; you may use any printed or hand-written material. The use of any electronic devices during the quiz or other attempts at cheating will have dire consequences.

1. (5 × 2 pts each = 10 pts) State which of the following are true/false. You don’t need to explain/prove your answers.

(a) \(\binom{100}{33} > \binom{100}{80} \)

True. \(\binom{100}{80} = \binom{100}{20} < \binom{100}{33} \) since the binomial coefficients are increasing with \(k \) up till \(k = \frac{n}{2} \) which is 50 in this case.

(b) \(\frac{\binom{21}{0} + \binom{21}{1} + \ldots + \binom{21}{10}}{2^{21}} > \frac{1}{2} \)

False. When \(n \) is odd, \(\binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{\frac{n-1}{2}} = 2^{n-1} \), and so the numerator is \(2^{21-1} = 2^{20} \) and so \(\frac{2^{20}}{2^{21}} = \frac{1}{2} \).

(c) \(\frac{\binom{18}{0} + \binom{18}{1} + \ldots + \binom{18}{9}}{2^{18}} = \frac{1}{2} \)

False. Assume for the sake of contradiction that the fraction is equal to \(\frac{1}{2} \). Then it must be the case that the numerator of the fraction is equal to \(2^{17} \), i.e.

\[
\binom{18}{0} + \ldots + \binom{18}{8} + \binom{18}{9} = 2^{17}.
\]

But since the sum of all binomial coefficients, i.e, \(\binom{n}{0} + \ldots + \binom{n}{n} \), is equal to \(2^n \) it follows that

\[
\binom{18}{10} + \ldots + \binom{18}{18} = 2^{18} - 2^{17} = 2^{17}.
\]

When \(n \) is even, \(\binom{n}{0} + \ldots + \binom{n}{\frac{n-1}{2}} = \binom{n}{\frac{n}{2} + 1} + \ldots + \binom{n}{n} \) and so

\[
\binom{18}{0} + \binom{18}{1} + \ldots + \binom{18}{8} = \binom{18}{10} + \binom{18}{1} + \ldots + \binom{18}{18}.
\]

Combining all three equations, we get

\[
\binom{18}{0} + \ldots + \binom{18}{8} + \binom{18}{9} = 2^{17}
\]

\[
\implies \binom{18}{10} + \ldots + \binom{18}{18} + \binom{18}{9} = 2^{17}
\]

\[
\implies 2^{17} + \binom{18}{9} = 2^{17}
\]
\[\binom{18}{9} = 0, \]

which is a contradiction to the fact that \(\binom{18}{9} = \frac{18!}{9!9!} > 0 \). Thus, the given fraction cannot be equal to \(\frac{1}{2} \).

(d) \(\binom{1001}{251} = \binom{999}{249} + \binom{999}{250} + \binom{1000}{251} \)

True. Use the formula \(\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \) twice. So \(\binom{999}{249} + \binom{999}{250} = \binom{1000}{250} \) which when added to \(\binom{1000}{251} \) gives the LHS.

(e) Let \(n \) be an odd positive integer, \(A \) be the set of all binary strings of length \(n \) with an odd number of ones in them, and \(B \) be the set of all binary strings of length \(n \) which contain strictly less than \(\frac{n}{2} \) ones in them. Then \(|A| = |B| \).

True. Recall that both \(|A| \) and \(|B| \) are equal to \(2^n - 1 \) when \(n \) is odd.

2. (10 pts) Find the coefficient of \(x^7 \) in \((1 - x)(1 + 3x)^7 + 2(1 + x^3)(7 - 3x^2)^4 \).

Solution: We can write

\[(1 - x)(1 + 3x)^7 + 2(1 + x^3)(7 - 3x^2)^4 = (1 + 3x)^7 + (-x)(1 + 3x)^7 + 2(7 - 3x^2)^4 + 2x^3(7 - 3x^2)^4. \]

It suffices to find the the coefficients of \(x^7 \) in each of the four terms in the sum in the RHS and then adding them up. The coefficient of \(x^7 \) in \((1 + 3x)^7 \) is \(\binom{7}{7}3^7 \). The coefficient of \(x^7 \) in \((-x)(1 + 3x)^7 \) is the negative of the coefficient of \(x^6 \) in \((1 + 3x)^7 \) which is \(-\binom{7}{6}3^6\).

As for \(2(7 - 3x^2)^4 \), note that

\[2(7 - 3x^2)^4 = \sum_{k=0}^{4} \binom{4}{k}7^k(-3x^2)^{4-k} = \sum_{k=0}^{4} 2\binom{4}{k}7^k(-3)^{4-k}x^{8-2k}. \]

The coefficient of \(x^7 \) in the RHS corresponds to the coefficient on the term when \(8 - 2k = 7 \). But that can never happen and so the coefficient is 0. Similarly,

\[2x^3(7 - 3x^2)^4 = \sum_{k=0}^{4} (2x^3)\binom{4}{k}7^k(-3x^2)^{4-k} = \sum_{k=0}^{4} 2\binom{4}{k}7^k(-3)^{4-k}x^{8-2k+3}. \]

Thus, the coefficient of \(x^7 \) is the one of the term corresponding to \(8 - 2k + 3 = 7 \) which is \(k = 2 \), and so the coefficient is \(2\binom{4}{2}7^2(-3)^2 \). So, overall, the coefficient of \(x^7 \) in the given expression is

\[\binom{7}{7}3^7 - \binom{7}{6}3^6 + 2\binom{4}{2}7^2(-3)^2. \]