This is a graph:
A graph is a pair $< V, E >$:

- V: vertices
- E: edges, where $E \subseteq V \times V$
This is a graph:
\[V = \{1, 2, 3\} \]
\[E = \{(1, 2), (1, 3), (2, 3)\} \]
GRAPH REPRESENTATION

- adjacency matrix
- adjacency list
If we have $|V| = n$ vertices, the adjacency matrix is an $n \times n$ matrix:

$$a_{ij} = \begin{cases}
1 & \text{if there is an edge from } v_i \text{ to } v_j \\
0 & \text{otherwise}
\end{cases}$$
ADJACENCY MATRIX

\[
\begin{pmatrix}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0
\end{pmatrix}
\]
ADJACENCY MATRIX

- Can check for an edge in $O(1)$ time
- Takes $O(n^2)$ space!
ADJACENCY LIST

Each vertex has a linked list of its (outgoing) neighbors.

That is, for each vertex \(u \), it has a list of every \(v \) for which \((u, v) \in E\).
ADJACENCY LIST

```
1: 2, 3
2: 1, 3
3: 1, 2, 4
4: 3
```

![Graph Diagram]
ADJACENCY LIST

- Have to walk a list to check for an edge
- Takes $O(|E|)$ space
SPARSITY

For a (connected) graph, we have that (roughly)

\[|V| \leq |E| \leq |V|^2 \]
SPARSITY

- Sparse: $|E|$ closer to $|V|$
- Dense: $|E|$ closer to $|V|^2$
SPARSITY

Which representation is better depends on the sparsity of the graph.

• For example, take the world-wide web
• Vertices are pages, edges are links
• $|V|$ is in the billions
• But most pages only link to a few other pages!
Suppose we have this graph:
Consider this as a maze:
To explore a maze we need two things:

- Chalk: to mark junctions you've visited
- String: to find your way back
To explore a graph we need two things:

- A variable to mark nodes you've visited
- A stack to find your way back
Let's find all nodes reachable from a particular node:

procedure explore(G,v)
Input: \(G = (V,E) \) is a graph; \(v \in V \)
Output: visited(u) is set to true for all nodes \(u \) reachable from \(v \)

visited(v) = true
previsit(v)
for each edge \((v,u) \in E \):
 if not visited(u): explore(u)
postvisit(v)
Let's run explore(A) on the graph on the left:
Then we have two kinds of edges:

- tree edges: black lines
- back edges: dotted lines
Is the explore function correct?
Does it find all vertices reachable from \(v \)?
Suppose not, that it misses vertex u:

v z w u
More generally, correctness here means for any $k \geq 0$, all nodes within k hops of v will be visited.

- **Base case:** $k = 0$
- **Inductive step:** If all nodes k hops away are visited, then all nodes $k + 1$ hops away are too
DEPTH-FIRST SEARCH

The explore function only visits nodes reachable from the starting point.

To examine the rest of the graph, we can repeatedly call explore.
procedure dfs(G)

for all \(v \in V \):
 \(\text{visited}(v) = \text{false} \)

for all \(v \in V \):
 if not \(\text{visited}(v) \):
 explore(v)
TIME TO RUN DFS

- $O(1)$ to mark node visited, call pre/postvisit
- Then loop through and scan adjacent edges
TIME TO RUN DFS

For all vertices together,

- $O(|V|)$ to mark nodes visited, call pre/postvisit
- Each edge (u, v) will be visited twice
 - once in explore(u)
 - once in explore(v)
- Therefore $O(|E|)$ work to scan edges

Total: $O(|V| + |E|)$
Running DFS on this graph (left) generates this forest (right):
An undirected graph is **connected** if there is a path from any vertex to any other.

In a disconnected graph, each connected subgraph is called a **connected component**.
Connected components:
Connected components:

- $\{A, B, E, I, J\}$
Connected components:
- \{ A, B, E, I, J \}
- \{ C, D, G, H, K, L \}
Connected components:

- \{A, B, E, I, J\}
- \{C, D, G, H, K, L\}
- \{F\}
procedure previsit(v)
ccnum[v] = cc

• Initialize to 0
• Increment each time DFS calls explore
Let's add a counter to see when we enter/leave nodes:

```plaintext
procedure previsit(v)
   pre[v] = clock
   clock = clock + 1

procedure postvisit(v)
   post[v] = clock
   clock = clock + 1
```
Then our forest now looks like this:
DIRECTED GRAPHS

B → A → C
E → F → D
G → H
G → F → E
DFS ON DIRECTED GRAPHS
Terminology:

- \(A \) is the root
- \(E \) has descendants \(F, G, \) and \(H \)
- \(E \) is an ancestor of \(F, G, \) and \(H \)
- \(C \) is the parent of \(D \)
- \(D \) is the child of \(C \)
We can also have finer-grained distinctions on edges in the generated tree:

- tree edges
- forward edges
- back edges
- cross edges
- tree edges: part of the DFS forest
- forward edges: node to nonchild descendant
- back edges: node to ancestor
- cross edges: lead to neither descendant nor ancestor
How many
• Forward edges?
• Back edges?
• Cross edges?
These relationships can be inferred from the pre and post numbers!
Vertex u is an ancestor of vertex v.
Edge categories:

pre/post ordering for \((u, v)\)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(v)</td>
<td>(v)</td>
</tr>
<tr>
<td>(u)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Edge type

Tree/forward

Back

Cross
CYCLES

A cycle is a circular path \(v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_k \rightarrow v_0 \).

A graph without cycles is acyclic.
A directed graph has a cycle if and only if DFS reveals a back edge.
A directed graph has a cycle if and only if DFS reveals a back edge.
A directed graph has a cycle if and only if DFS reveals a back edge.

- \((\leftarrow)\) If \((u, v)\) is a back edge,
A directed graph has a cycle if and only if DFS reveals a back edge.

• (\leftarrow) If (u, v) is a back edge,
 - There is a path from v to u
A directed graph has a cycle if and only if DFS reveals a back edge.

- \((\leftarrow) \) If \((u, v)\) is a back edge,
 - There is a path from \(v\) to \(u\)
 - That path plus the back edge is a cycle
A directed graph has a cycle if and only if DFS reveals a back edge.

• (\Leftarrow) If (u, v) is a back edge,
 ▪ There is a path from v to u
 ▪ That path plus the back edge is a cycle

• (\Rightarrow) If $v_0 \to \ldots \to v_k \to v_0$ is a cycle:
A directed graph has a cycle if and only if DFS reveals a back edge.

- \((\Leftarrow)\) If \((u, v)\) is a back edge,
 - There is a path from \(v\) to \(u\)
 - That path plus the back edge is a cycle
- \((\Rightarrow)\) If \(v_0 \rightarrow \ldots \rightarrow v_k \rightarrow v_0\) is a cycle:
 - Consider the first node \(v_i\) to be discovered
A directed graph has a cycle if and only if DFS reveals a back edge.

- \((\Leftarrow)\) If \((u, v)\) is a back edge,
 - There is a path from \(v\) to \(u\)
 - That path plus the back edge is a cycle
- \((\Rightarrow)\) If \(v_0 \rightarrow \ldots \rightarrow v_k \rightarrow v_0\) is a cycle:
 - Consider the first node \(v_i\) to be discovered
 - It will reach all other nodes on the cycle
A directed graph has a cycle if and only if DFS reveals a back edge.

• \((\Leftarrow)\) If \((u, v)\) is a back edge,
 - There is a path from \(v\) to \(u\)
 - That path plus the back edge is a cycle

• \((\Rightarrow)\) If \(v_0 \rightarrow \ldots \rightarrow v_k \rightarrow v_0\) is a cycle:
 - Consider the first node \(v_i\) to be discovered
 - It will reach all other nodes on the cycle
 - The edge \(v_{i-1} \rightarrow v_i\) will be a back edge
Dags are good for modeling hierarchies or dependencies (e.g., course prerequisites).
Given a dag, we may want to linearize (topologically sort) the nodes.
Given a dag, we may want to linearize (topologically sort) the nodes.

One possibility: B, A, D, C, E, F
How can we linearize a dag algorithmically?
How can we linearize a dag algorithmically?
List nodes in decreasing order of post numbers
List nodes in decreasing order of post numbers
List nodes in decreasing order of post numbers

\[B, D, A, C, F, E \]
Given a dag, we can define two kinds of special nodes:

- **source**: a node with no incoming edges
- **sink**: a node with no outgoing edges
Given a dag, we can define two kinds of special nodes:

- **source**: a node with no incoming edges
- **sink**: a node with no outgoing edges

Then a linearization must start with a source and end with a sink.
Another algorithm for linearization:
Another algorithm for linearization:

- find a source
Another algorithm for linearization:

- find a source
- output it
Another algorithm for linearization:

- find a source
- output it
- delete it
Another algorithm for linearization:

- find a source
- output it
- delete it
- repeat until graph is empty
STRONGLY-CONNECTED COMPONENTS

Two nodes u and v are connected if there is a $u-v$ path as well as a $v-u$ path.
We can partition a directed graph into a set **strongly-connected components** (SCCs), where all vertices are connected.
Dotted lines indicate the SCCs:
Then we can shrink each component to a single meta-vertex:
A directed graph is a dag of its strongly-connected components.
How can we decompose a graph to SCCs?

• If we found a node in a sink SCC
 ■ explore would find all nodes in its SCC
• Then we could remove it and repeat
How can we decompose a graph to SCCs?
But it's easier to find a node in a source SCC:
How can we decompose a graph to SCCs?
But it's easier to find a node in a source SCC:
node with the highest post number in DFS
More generally,

- if C and C' are SCCs,
- and there's a $C \rightarrow C'$ edge,
- then the highest post number in $C >$ highest in C'
This means SCCs can be linearized by decreasing highest post numbers.

(a generalization of linearization of dags)
How can we decompose a graph to SCCs?
We can find a source SCC, but we need a sink SCC
How can we decompose a graph to SCCs?
We can find a source SCC, but we need a sink SCC
Transform the graph G into the reverse graph G^R!
How can we decompose a graph to SCCs?

- Compute G^R
- Run DFS on G^R
- Find the connected components using explore, in decreasing order of post numbers
Suppose we have this graph:
Then G^R is:
And a DFS gives these post numbers:
Then we can separate this into SCCs \(\{C, D\} \) and \(\{A, B\} \):