Suppose we have a graph, and do DFS search from S:
We should get the following tree:
We should get the following tree:

```
  S  
 /   \\  /   \  \
A     B  
   \  /    \\
   C D     
    \   /   \\
     E  
```

But if we were interested in getting to C, this gives a rather inefficient route of $S \rightarrow A \rightarrow B \rightarrow C$ instead of $S \rightarrow C$.
Imagine the graph as a physical set of marbles connected by string:
When we pick up the graph by S, we see immediately how to get to C:
BREADTH-FIRST SEARCH (BFS)

- Proceed layer by layer
- Find layer $d + 1$ by scanning neighbors of layer d
procedure $\text{bfs}(G, s)$

Input: Graph $G = (V, E)$, directed or undirected; vertex $s \in V$
Output: For all vertices u reachable from s, $\text{dist}(u)$ is set to the distance from s to u.

for all $u \in V$:
 $\text{dist}(u) = \infty$

$\text{dist}(s) = 0$

$Q = [s]$ (queue containing just s)

while Q is not empty:
 $u = \text{eject}(Q)$
 for all edges $(u, v) \in E$:
 if $\text{dist}(v) = \infty$:
 $\text{inject}(Q, v)$
 $\text{dist}(v) = \text{dist}(u) + 1$
Let's run BFS on our graph, starting at S:
Let's run BFS on our graph, starting at S:

<table>
<thead>
<tr>
<th>Order of visitation</th>
<th>Queue contents after processing node</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>$[S]$</td>
</tr>
<tr>
<td>A</td>
<td>$[A \ C \ D \ E]$</td>
</tr>
<tr>
<td>C</td>
<td>$[C \ D \ E \ B]$</td>
</tr>
<tr>
<td>D</td>
<td>$[D \ E \ B]$</td>
</tr>
<tr>
<td>E</td>
<td>$[E \ B]$</td>
</tr>
<tr>
<td>B</td>
<td>$[B]$</td>
</tr>
</tbody>
</table>
IS BFS CORRECT?

That is, for each d, at some point:

- all nodes with distance $\leq d$ are correctly set
- all other nodes have distance set to ∞
- the queue contains exactly the nodes at distance d
BFS RUNNING TIME

- Each vertex put onto queue once
- Examine each edge once (directed) or twice (undirected)

\[O(|V| + |E|) \]
Edges are often weighted with some kind of length:
We could compute shortest paths using BFS:

- Break edges into unit lengths with dummy nodes!
Suppose this is our graph:
We can break up each edge based on its length:

And then run BFS as usual
But what if this was our graph?
Then BFS is a slow, boring process:

\[G' \]
Then BFS is a slow, boring process:

G':

What if we could tell BFS to wake us up when it gets to the interesting part?
Wake us up when it gets to the interesting part:

\[G:\]

\[S \quad 100 \text{ } 50 \quad 200 \quad B \quad A \]
Wake us up when it gets to the interesting part:

$G:$

- ETAs for A and B are 100 and 200
Wake us up when it gets to the interesting part:

• ETAs for A and B are 100 and 200
• Set alarms for 100 and 200
Wake us up when it gets to the interesting part:

- ETAs for A and B are 100 and 200
- Set alarms for 100 and 200
- Wake up at time 100
Wake us up when it gets to the interesting part:

- ETAs for A and B are 100 and 200
- Set alarms for 100 and 200
- Wake up at time 100
- New ETA for B is 150
Wake us up when it gets to the interesting part:

- ETAs for A and B are 100 and 200
- Set alarms for 100 and 200
- Wake up at time 100
- New ETA for B is 150
- Change B's alarm to 150
Wake us up when it gets to the interesting part:
Wake us up when it gets to the interesting part:

- Set alarm for node s at time 0
Wake us up when it gets to the interesting part:

- Set alarm for node s at time 0
- Repeat until no more alarms:
Wake us up when it gets to the interesting part:

- Set alarm for node s at time 0
- Repeat until no more alarms:

 Say the next alarm goes off at time T for node u
Wake us up when it gets to the interesting part:

- Set alarm for node s at time 0
- Repeat until no more alarms:

 Say the next alarm goes off at time T for node u

 - Then the distance from s to u is T
Wake us up when it gets to the interesting part:

- Set alarm for node s at time 0
- Repeat until no more alarms:

 Say the next alarm goes off at time T for node u
 - Then the distance from s to u is T
 - For each neighbor v of u:
Wake us up when it gets to the interesting part:

- Set alarm for node s at time 0
- Repeat until no more alarms:

 Say the next alarm goes off at time T for node u

 - Then the distance from s to u is T
 - For each neighbor v of u:
 - If there's no alarm for v, set one for $T + l(u, v)$
Wake us up when it gets to the interesting part:

- Set alarm for node s at time 0
- Repeat until no more alarms:

 Say the next alarm goes off at time T for node u

 - Then the distance from s to u is T
 - For each neighbor v of u:
 - If there's no alarm for v, set one for $T + l(u, v)$
 - If v's alarm is later than that, reduce it to this
This is essentially Dijkstra's algorithm!
(This is essentially Dijkstra)
DIJKSTRA'S ALGORITHM

Given a graph G and a starting vertex s, find shortest paths to all reachable vertices
DIJKSTRA'S ALGORITHM

We need to use a priority queue with these operations:

- insert
- decrease-key
- delete-min
- make-queue
procedure dijkstra(G, l, s)

Input: Graph $G = (V, E)$, directed or undirected; positive edge lengths $\{l_e : e \in E\}$; vertex $s \in V$

Output: For all vertices u reachable from s, $dist(u)$ is set to the distance from s to u.

for all $u \in V$:
 $dist(u) = \infty$
 $prev(u) = nil$
$dist(s) = 0$

$H = makequeue(V)$ (using $dist$-values as keys)

while H is not empty:
 $u = deletemin(H)$
 for all edges $(u, v) \in E$:
 if $dist(v) > dist(u) + l(u, v)$:
 $dist(v) = dist(u) + l(u, v)$
 $prev(v) = u$
 decreasekey(H, v)
Finally, we get this tree for paths from A:
Dijkstra's algorithm is basically just BFS:

• Instead of a regular queue,
• use a priority queue to account for lengths
Another way of looking at this:

- Start at s
- Grow the "known region" R to larger distances
- Next node added to R is the one closest to s
How do we find the next node v outside R?

- Consider shortest path $s \rightarrow \cdots \rightarrow u \rightarrow v$
- u closer to s than v
- $u \in R$
- So $s \rightarrow v$ path extends a currently known path by one edge
How do we find the next node v outside R?

- Try all single-edge extentions, find the shortest path
- Its endpoint is v

That is, v is the node outside R where $\text{distance}(s, u) + l(u, v)$ is minimized, for all $u \in R$
Initialize \(\text{dist}(s) \) to 0, other \(\text{dist}() \) values to \(\infty \)
\(R = \{ \} \) (the ‘‘known region’’)
while \(R \neq V \):
 Pick the node \(v \notin R \) with smallest \(\text{dist}(\cdot) \)
 Add \(v \) to \(R \)
 for all edges \((v, z) \in E \):
 if \(\text{dist}(z) > \text{dist}(v) + l(v, z) \):
 \(\text{dist}(z) = \text{dist}(v) + l(v, z) \)
DIJKSTRA'S RUNNING TIME

- makequeue: at most $|V|$ insert operations
- $|V|$ deletemin operations
- $|V| + |E|$ insert/decreasekey operations

Time depends on implementation, but if we use a binary heap:

$$O((|V| + |E|) \log |V|)$$
How can we implement the priority queue?

- Array
- Binary heap
- d-ary heap
- Fibonacci heap
ARRAY

- insert, decreasekey: $O(1)$
- deletemin: $O(n)$
BINARY HEAP

- Complete binary tree (except last level)
- Key value \leq that of its children
BINARY HEAP

- insert:
 - place node at bottom of tree and "bubble up"
- decreasekey:
 - "bubble up" (it's already in the tree)
- deletemin:
 - remove (and return) root
 - move last element to root
 - "sift down"
Let's say we have this initial heap:
We insert 7:
Bubble up:
Bubble up:
Now let's run delete-min:
Move last node to root:
Sift down:
Sift down:
d-ARY HEAP

- Like binary heap, but with d children for each node
- Height reduces to

\[\Theta \left(\log_d n \right) = \Theta \left(\left(\log n \right) / \left(\log d \right) \right) \]

- Insert/decreasekey slightly faster
- Deletemin slightly slower
Which implementation is best?

Implementation	deletemin	insert/decreasekey	$	V	\times \text{deletemin} + (V	+	E) \times \text{insert}$				
Array	$O(V)$	$O(1)$	$O(V	^2)$						
Binary heap	$O(\log	V)$	$O(\log	V)$	$O((V	+	E) \log	V)$
d-ary heap	$O\left(\frac{d \log	V	}{\log d}\right)$	$O\left(\frac{\log	V	}{\log d}\right)$	$O\left((V	\cdot d +	E) \frac{\log	V	}{\log d}\right)$
Fibonacci heap	$O(\log	V)$	$O(1)$ (amortized)	$O(V	\log	V	+	E)$		
Suppose now that the graph has negative edges:
Can we just shift everything into the positive range?
Note that the distances in Dijkstra's algorithm are always \(\leq \) the true distance.
procedure update \((u, v) \in E\)
\[
dist(v) = \min\{dist(v), dist(u) + l(u, v)\}
\]

- If \(u\) is the second-last node in shortest path to \(v\), gives exact distance
- Cannot set \(dist(v)\) smaller than the true distance

Dijkstra's algorithm can be seen as a sequence of these updates
Consider the shortest path from s to some node t:

- This path has at most $|V| - 1$ edges
- If we did updates in this order:

$$(s, u_1), (u_1, u_2), (u_2, u_3), \ldots, (u_k, t)$$

we would get the correct distance to t.
Consider the shortest path from s to some node t:

- How can we update the right edges in the right order, without already knowing the shortest paths?
- Just update all edges $|V| - 1$ times!

\Rightarrow Bellman-Ford algorithm, $O(|V| \cdot |E|)$.
Bellman-Ford algorithm:

procedure shortest-paths\((G, l, s)\)

Input: Directed graph \(G = (V, E)\);
- edge lengths \(\{l_e : e \in E\}\) with no negative cycles;
- vertex \(s \in V\)

Output: For all vertices \(u\) reachable from \(s\), \(dist(u)\) is set to the distance from \(s\) to \(u\).

for all \(u \in V\):
- \(dist(u) = \infty\)
- \(prev(u) = \text{nil}\)

\(dist(s) = 0\)

repeat \(|V| - 1\) times:
 for all \(e \in E\):
 update\((e)\)
Bellman-Ford algorithm:

Diagram:
- Nodes: S, A, B, C, D, E, F, G
- Edges and weights:
 - S to A: 10
 - S to G: 8
 - A to S: 1
 - A to B: 2
 - A to C: 1
 - B to E: 1
 - C to B: 1
 - C to D: 3
 - D to E: 1
 - E to D: -1
 - F to E: -4
 - G to F: 1

Table:

<table>
<thead>
<tr>
<th>Node</th>
<th>Iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>∞</td>
</tr>
<tr>
<td>B</td>
<td>∞</td>
</tr>
<tr>
<td>C</td>
<td>∞</td>
</tr>
<tr>
<td>D</td>
<td>∞</td>
</tr>
<tr>
<td>E</td>
<td>∞</td>
</tr>
<tr>
<td>F</td>
<td>∞</td>
</tr>
<tr>
<td>G</td>
<td>∞</td>
</tr>
</tbody>
</table>
What if there is a negative cycle?
Two kinds of graphs that cannot have negative cycles:

- graphs with no negative edges
- dags
SHORTEST PATHS IN DAGS

Key idea:

• In any path, the vertices appear in increasing linearized order
SHORTEST PATHS IN DAGS

- Linearize the dag using DFS
- Visit the vertices in sorted order
- Update all outgoing edges
procedure dag-shortest-paths\((G, l, s) \)

Input: \(\text{Dag } G = (V, E); \)
edge lengths \(\{l_e : e \in E\} \); vertex \(s \in V \)

Output: For all vertices \(u \) reachable from \(s \), \(\text{dist}(u) \) is set to the distance from \(s \) to \(u \).

for all \(u \in V \):
\[
\text{dist}(u) = \infty
\]
\[
\text{prev}(u) = \text{nil}
\]

\(\text{dist}(s) = 0 \)
Linearize \(G \)
for each \(u \in V \), in linearized order:
for all edges \((u, v) \in E \):
update \((u, v) \)
Recap: How can we linearize a dag algorithmically?

- List nodes in decreasing order of post numbers
Order: B, D, A, C, F, E
Now let's add some lengths:

Order: B, D, A, C, F, E
B, D, A, C, F, E
\[B, D, A, C, F, E \]

\[
\begin{array}{ccc}
\text{0} & \text{1} \\
A & \infty & 3 \\
B & 0 & 0 \\
C & \infty & \infty \\
D & \infty & 1 \\
E & \infty & \infty \\
F & \infty & \infty \\
\end{array}
\]
B, D, A, C, F, E
\[B, D, A, C, F, E \]
\[B, D, A, C, F, E \]